
Data Munging with Perl

Data Munging
with Perl

DAVID CROSS

M A N N I N G
Greenwich

(74° w. long.)

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
32 Lafayette Place Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2001 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Library of Congress Cataloging-in-Publication Data
Cross, David, 1962-

Data munging with Perl / David Cross.
p. cm.

Includes bibliographical references and index.
ISBN 1-930110-00-6 (alk. paper)
1. Perl (Computer program language) 2. Data structures (Computer science)
3. Data transmission systems. I. Title.

QA76.73.P22 C39 20001998
005.7'2—dc21 00-050009

CIP

Manning Publications Co. Copyeditor: Elizabeth Martin
32 Lafayette Place Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 04 03 02 01

contents contents
foreword xi
preface xiii
about the cover illustration xviii

PART I FOUNDATIONS... 1

1 Data, data munging, and Perl 3
1.1 What is data munging? 4

Data munging processes 4 ■ Data recognition 5
Data parsing 6 ■ Data filtering 6 ■ Data
transformation 6

1.2 Why is data munging important? 7
Accessing corporate data repositories 7 ■ Transferring
data between multiple systems 7 ■ Real-world data
munging examples 8

1.3 Where does data come from? Where does it go? 9
Data files 9 ■ Databases 10 ■ Data pipes 11
Other sources/sinks 11

1.4 What forms does data take? 12
Unstructured data 12 ■ Record-oriented data 13
Hierarchical data 13 ■ Binary data 13

1.5 What is Perl? 14
Getting Perl 15

vi CONTENTS
1.6 Why is Perl good for data munging? 16
1.7 Further information 17
1.8 Summary 17

2 General munging practices 18
2.1 Decouple input, munging, and output processes 19
2.2 Design data structures carefully 20

Example: the CD file revisited 20
2.3 Encapsulate business rules 25

Reasons to encapsulate business rules 26 ■ Ways to
encapsulate business rules 26 ■ Simple module 27
Object class 28

2.4 Use UNIX “filter” model 31
Overview of the filter model 31 ■ Advantages of
the filter model 32

2.5 Write audit trails 36
What to write to an audit trail 36 ■ Sample audit
trail 37 ■ Using the UNIX system logs 37

2.6 Further information 38
2.7 Summary 38

3 Useful Perl idioms 39
3.1 Sorting 40

Simple sorts 40 ■ Complex sorts 41 ■ The Orcish
Manoeuvre 42 ■ Schwartzian transform 43
 The Guttman-Rosler transform 46 ■ Choosing a
sort technique 46

3.2 Database Interface (DBI) 47
Sample DBI program 47

3.3 Data::Dumper 49
3.4 Benchmarking 51
3.5 Command line scripts 53

CONTENTS vii
3.6 Further information 55
3.7 Summary 56

4 Pattern matching 57
4.1 String handling functions 58

Substrings 58 ■ Finding strings within strings (index
and rindex) 59 ■ Case transformations 60

4.2 Regular expressions 60
What are regular expressions? 60 ■ Regular expression
syntax 61 ■ Using regular expressions 65 ■ Example:
translating from English to American 70 ■ More
examples: /etc/passwd 73 ■ Taking it to extremes 76

4.3 Further information 77
4.4 Summary 78

PART II DATA MUNGING .. 79

5 Unstructured data 81
5.1 ASCII text files 82

Reading the file 82 ■ Text transformations 84
Text statistics 85

5.2 Data conversions 87
Converting the character set 87 ■ Converting line
endings 88 ■ Converting number formats 90

5.3 Further information 94
5.4 Summary 95

6 Record-oriented data 96
6.1 Simple record-oriented data 97

Reading simple record-oriented data 97 ■ Processing
simple record-oriented data 100 ■ Writing simple
record-oriented data 102 ■ Caching data 105

viii CONTENTS
6.2 Comma-separated files 108
Anatomy of CSV data 108 ■ Text::CSV_XS 109

6.3 Complex records 110
Example: a different CD file 111
Special values for $/ 113

6.4 Special problems with date fields 114
Built-in Perl date functions 114
Date::Calc 120 ■ Date::Manip 121
Choosing between date modules 122

6.5 Extended example: web access logs 123
6.6 Further information 126
6.7 Summary 126

7 Fixed-width and binary data 127
7.1 Fixed-width data 128

Reading fixed-width data 128 ■ Writing
fixed-width data 135

7.2 Binary data 139
Reading PNG files 140 ■ Reading and writing
MP3 files 143

7.3 Further information 144
7.4 Summary 145

PART III SIMPLE DATA PARSING.................................. 147

8 Complex data formats 149
8.1 Complex data files 150

Example: metadata in the CD file 150 ■ Example:
reading the expanded CD file 152

8.2 How not to parse HTML 154
Removing tags from HTML 154 ■ Limitations of
regular expressions 157

CONTENTS ix
8.3 Parsers 158
An introduction to parsers 158 ■ Parsers in Perl 161

8.4 Further information 162
8.5 Summary 162

9 HTML 163
9.1 Extracting HTML data from the World Wide Web 164
9.2 Parsing HTML 165

Example: simple HTML parsing 165
9.3 Prebuilt HTML parsers 167

HTML::LinkExtor 167 ■ HTML::TokeParser 169
HTML::TreeBuilder and HTML::Element 171

9.4 Extended example: getting weather forecasts 172
9.5 Further information 174
9.6 Summary 174

10 XML 175
10.1 XML overview 176

What’s wrong with HTML? 176 ■ What is XML? 176
10.2 Parsing XML with XML::Parser 178

Example: parsing weather.xml 178 ■ Using
XML::Parser 179 ■ Other XML::Parser styles 181
XML::Parser handlers 188

10.3 XML::DOM 191
Example: parsing XML using XML::DOM 191

10.4 Specialized parsers—XML::RSS 193
What is RSS? 193 ■ A sample RSS file 193
Example: creating an RSS file with XML::RSS 195
Example: parsing an RSS file with XML::RSS 196

10.5 Producing different document formats 197
Sample XML input file 197 ■ XML document
transformation script 198 ■ Using the XML
document transformation script 205

x CONTENTS
10.6 Further information 208
10.7 Summary 208

11 Building your own parsers 209
11.1 Introduction to Parse::RecDescent 210

Example: parsing simple English sentences 210
11.2 Returning parsed data 212

Example: parsing a Windows INI file 212
Understanding the INI file grammar 213
Parser actions and the @item array 214
Example: displaying the contents of @item 214
Returning a data structure 216

11.3 Another example: the CD data file 217
 Understanding the CD grammar 218 ■ Testing
the CD file grammar 219 ■ Adding parser actions 220

11.4 Other features of Parse::RecDescent 223
11.5 Further information 224
11.6 Summary 224

PART IV THE BIG PICTURE .. 225

12 Looking back—and ahead 227
12.1 The usefulness of things 228

The usefulness of data munging 228 ■ The usefulness of
Perl 228 ■ The usefulness of the Perl community 229

12.2 Things to know 229
Know your data 229 ■ Know your tools 230
Know where to go for more information 230

appendix A Modules reference 232
appendix B Essential Perl 254
index 273

foreword foreword
Perl is something of a weekend warrior. Outside of business hours you’ll find it
indulging in all kinds of extreme sports: writing haiku; driving GUIs; reviving Lisp,
Prolog, Forth, Latin, and other dead languages; playing psychologist; shovelling
MUDs; inflecting English; controlling neural nets; bringing you the weather; play-
ing with Lego; even running quantum computations.

 But that’s not its day job.
 Nine-to-five it earns its keep far more prosaically: storing information in data-

bases, extracting it from files, reorganizing rows and columns, converting to and
from bizarre formats, summarizing documents, tracking data in real time, creating
statistics, doing back-up and recovery, merging and splitting data streams, logging
and checkpointing computations.

 In other words, munging data. It’s a dirty job, but someone has to do it.
 If that someone is you, you’re definitely holding the right book. In the follow-

ing pages, Dave will show you dozens of useful ways to get those everyday data
manipulation chores done better, faster, and more reliably. Whether you deal with
fixed-format data, or binary, or SQL databases, or CSV, or HTML/XML, or some
bizarre proprietary format that was obviously made up on a drunken bet, there’s
help right here.

 Perl is so good for the extreme stuff, that we sometimes forget how powerful it is
for mundane data manipulation as well. As this book so ably demonstrates, in addi-
tion to the hundreds of esoteric tools it offers, our favourite Swiss Army Chainsaw
also sports a set of simple blades that are ideal for slicing and dicing ordinary data.

 Now that’s a knife!

 DAMIAN CONWAY

preface preface
Over the last five years there has been an explosion of interest in Perl. This is largely
because of the huge boost that Perl received when it was adopted as the de facto
language for creating content on the World Wide Web. Perl’s powerful text manip-
ulation facilities made it an obvious choice for writing Common Gateway Interface
(CGI) scripts. In the wake of the web’s popularity, Perl has become one of the hot-
test programming languages currently in use.

 Unfortunately, a side effect of this association with CGI programming has been
the popular misconception that this is Perl’s sole function. Some people even
believe that Perl was designed for use in CGI programming. This is clearly wrong as
Perl was, in fact, written long before the design of the CGI protocol.

 This book, then, is not about writing CGI scripts, but about another of the
computing tasks for which Perl is particularly well suited—data munging.

 Data munging encompasses all of those boring, everyday tasks to which most
programmers devote a good deal of their time—the tasks of converting data from
one format into another. This comes close to being a definitive statement of what
programming is: taking input data, processing (or “munging”) it, and producing
output data. This is what most programmers do most of the time.

 Perl is particularly good at these kinds of tasks. It helps programmers write data
conversion programs quickly. In fact, the same characteristics that make Perl ideal
for CGI programming also make it ideal for data munging. (CGI programs are
really data munging programs in flashy disguise.)

 In keeping with the Perl community slogan, “There’s more than one way to do
it,” this book examines a number of ways of dealing with various types of data.
Hopefully, this book will provide some new “ways to do it” that will make your
programming life more productive and more enjoyable.

xiv PREFACE
 Another Perl community slogan is, “Perl makes easy jobs easy and hard jobs pos-
sible.” It is my hope that by the time you have reached the end of this book, you
will see that “Perl makes fun jobs fun and boring jobs bearable.”

Intended audience
This book is aimed primarily at programmers who munge data as a regular part of
their job and who want to write more efficient data-munging code. I will discuss
techniques for data munging, introducing new techniques, as well as novel uses for
familiar methods. While some approaches can be applied using any language, I use
Perl here to demonstrate the ease of applying these techniques in this versatile lan-
guage. In this way I hope to persuade data mungers that Perl is a flexible and vital
tool for their day-to-day work.

 Throughout the book, I assume a rudimentary knowledge of Perl on the part of
the reader. Anyone who has read and understood an introductory Perl text should
have no problem following the code here, but for the benefit of readers brand new
to Perl, I’ve included both my suggestions for Perl primers (see chapter 1) as well as
a brief introduction to Perl (see appendix B).

About this book
The book begins by addressing introductory and general topics, before gradually
exploring more complex types of data munging.

 PART I sets the scene for the rest of the book.
 Chapter 1 introduces data munging and Perl. I discuss why Perl is particularly

well suited to data munging and survey the types of data that you might meet,
along with the mechanisms for receiving and sending data.

 Chapter 2 contains general methods that can be used to make data munging
programs more efficient. A particularly important part of this chapter is the discus-
sion of the UNIX filter model for program input and output.

 Chapter 3 discusses a number of Perl idioms that will be useful across a number
of different data munging tasks, including sorting data and accessing databases.

 Chapter 4 introduces Perl’s pattern-matching facilities, a fundamental part of
many data munging programs.

 PART II begins our survey of data formats by looking at unstructured and
record-structured data.

PREFACE xv
 Chapter 5 surveys unstructured data. We concentrate on processing free text and
producing statistics from a text file. We also go over a couple of techniques for con-
verting numbers between formats.

 Chapter 6 considers record-oriented data. We look at reading and writing data
one record at a time and consider the best ways to split records into individual
fields. In this chapter, we also take a closer glance at one common record-oriented
file format: comma-separated values (CSV) files, view more complex record types,
and examine Perl’s data handling facilities.

 Chapter 7 discusses fixed-width and binary data. We compare several techniques
for splitting apart fixed-width records and for writing results into a fixed-width for-
mat. Then, using the example of a couple of popular binary file formats, we exam-
ine binary data.

 PART III moves beyond the limits of the simple data formats into the realms of
hierarchical data structures and parsers.

 Chapter 8 investigates the limitations of the data formats that we have seen pre-
viously and suggests good reasons for wanting more complex formats. We then see
how the methods we have used so far start to break down on more complex data
like HTML. We also take a brief look at an introduction to parsing theory.

 Chapter 9 explores how to extract useful information from documents marked
up with HTML. We cover a number of HTML parsing tools available for Perl and
discuss their suitability to particular tasks.

 Chapter 10 discusses XML. First, we consider the limitations of HTML and the
advantages of XML. Then, we look at XML parsers available for use with Perl.

 Chapter 11 demonstrates how to write parsers for your own data structures
using a parser-building tool available for Perl.

 PART IV concludes our tour with a brief review as well as suggestions for fur-
ther study.

 Appendix A is a guide to many of the Perl modules covered in the book.
 Appendix B provides a rudimentary introduction to Perl.

Typographical conventions
The following conventions are used in the book:

■ Technical terms are introduced in an italic font.
■ The names of functions, files, and modules appear in a fixed-width font.

xvi PREFACE
■ All code examples are also in a fixed-width font.
■ Program output is in a bold fixed-width font.

The following conventions are followed in diagrams of data structures:

■ An array is shown as a rectangle. Each row within the rect-
angle represents one element of the array. The element
index is shown on the left of the row, and the element
value is shown on the right of the row.

■ A hash is shown as a rounded rectangle. Each row within
the rectangle represents a key/value pair. The key is shown
on the left of the row, and the value is shown on the right
of the row.

■ A reference is shown as a black disk with
an arrow pointing to the referenced vari-
able. The type of the reference appears to
the left of the disk.

Source code downloads
All source code for the examples presented in this book is available to purchasers
from the Manning web site. The URL www.manning.com/cross/ includes a link to
the source code files.

Author Online
Purchase of Data Munging with Perl includes free access to a private Web forum run
by Manning Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users. To access
the forum and subscribe to it, point your web browser to www.manning.com/
cross/. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the AO remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions lest his interest stray!

0

1

element zero

element one

key1

key2

value one

value two

0

1

element zero

element one

key arrayref

PREFACE xvii
 The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s website as long as the book is in print.

Acknowledgments
My heartfelt thanks to the people who have made this book possible (and, who, for
reasons I’ll never understand, don’t insist on having their names appear on the cover).

 Larry Wall designed and wrote Perl, and without him this book would have
been very short.

 Marjan Bace and his staff at Manning must have wondered at times if they
would ever get a finished book out of me. I’d like to specifically mention Ted
Kennedy for organizing the review process; Mary Piergies for steering the manu-
script through production; Syd Brown for answering my technical questions;
Sharon Mullins and Lianna Wlasiuk for editing; Dottie Marsico for typesetting the
manuscript and turning my original diagrams into something understandable; and
Elizabeth Martin for copyediting.

 I was lucky enough to have a number of the brightest minds in the Perl commu-
nity review my manuscript. Without these people the book would have been riddled
with errors, so I owe a great debt of thanks to Adam Turoff, David Adler, Greg
McCarroll, D.J. Adams, Leon Brocard, Andrew Johnson, Mike Stok, Richard
Wherry, Andy Jones, Sterling Hughes, David Cantrell, Jo Walsh, John Wiegley, Eric
Winter, and George Entenman.

 Other Perl people were involved (either knowingly or unknowingly) in conver-
sations that inspired sections of the book. Many members of the London Perl Mon-
gers mailing list have contributed in some way, as have inhabitants of the Perl
Monks Monastery. I’d particularly like to thank Robin Houston, Marcel Grünauer,
Richard Clamp, Rob Partington, and Ann Barcomb.

 Thank you to Sean Burke for correcting many technical inaccuracies and also
improving my prose considerably.

 Many thanks to Damian Conway for reading through the manuscript at the last
minute and writing the foreword.

 A project of this size can’t be undertaken without substantial support from
friends and family. I must thank Jules and Crispin Leyser and John and Anna Molo-
ney for ensuring that I took enough time off from the book to enjoy myself drink-
ing beer and playing poker or Perudo.

 Thank you, Jordan, for not complaining too much when I was too busy to fix
your computer.

xviii PREFACE
 And lastly, thanks and love to Gill without whose support, encouragement, and
love I would never have got to the end of this. I know that at times over the last
year she must have wondered if she still had a husband, but I can only apologize
(again) and promise that she’ll see much more of me now that the book is finished.

about the cover illustration
The important-looking man on the cover of Data Munging with Perl is a Turkish
First Secretary of State. While the exact meaning of his title is for us shrouded in
historical fog, there is no doubt that we are facing a man of prestige and power. The
illustration is taken from a Spanish compendium of regional dress customs first pub-
lished in Madrid in 1799. The book’s title page informs us:

 Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

 Which we loosely translate as:
 General Collection of Costumes currently used in the Nations of the Known
World, designed and printed with great exactitude by R.M.V.A.R. This work is
very useful especially for those who hold themselves to be universal travelers

 Although nothing is known of the designers, engravers and artists who colored
this illustration by hand, the “exactitude” of their execution is evident in this draw-
ing. The figure on the cover is a “Res Efendi,” a Turkish government official which
the Madrid editor renders as “Primer Secretario di Estado.” The Res Efendi is just
one of a colorful variety of figures in this collection which reminds us vividly of how
distant and isolated from each other the world’s towns and regions were just 200
years ago. Dress codes have changed since then and the diversity by region, so rich
at the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps we have traded a cultural and visual diversity for a more
varied personal life—certainly a more varied and interesting world of technology.

 At a time when it can be hard to tell one computer book from another, Manning
celebrates the inventiveness and initiative of the computer business with book cov-
ers based on the rich diversity of regional life of two centuries ago—brought back
to life by the picture from this collection.

Part I

Foundations

In which our heroes learn a great deal about the background of the
data munging beast in all its forms and habitats. Fortunately, they are
also told of the great power of the mystical Perl which can be used to
tame the savage beast.

Our heroes are then taught a number of techniques for fighting the
beast without using the Perl. These techniques are useful when fighting
with any weapon, and once learned, can be combined with the power of
the Perl to make them even more effective.

Later, our heroes are introduced to additional techniques for using
the Perl—all of which prove useful as their journey continues.

1Data, data munging,
and Perl
What this chapter covers:
■ The process of munging data
■ Sources and sinks of data
■ Forms data takes
■ Perl and why it is perfect for data munging
3

4 CHAPTER

Data, data munging, and Perl
1.1 What is data munging?

Data munging is all about taking data that is in one format and converting it into
another. You will often hear the term being used when the speaker doesn’t really
know exactly what needs to be done to the data.

“We’ll take the data that’s exported by this system, munge it around a bit, and
import it into that system.”

When you think about it, this is a fundamental part of what many (if not most)
computer systems do all day. Examples of data munging include:

■ The payroll process that takes your pay rate and the hours you work and cre-
ates a monthly payslip

■ The process that iterates across census returns to produce statistics about
the population

■ A process that examines a database of sports scores and produces a league table
■ A publisher who needs to convert manuscripts between many different text formats

1.1.1 Data munging processes

More specifically, data munging consists of a number of processes that are applied to
an initial data set to convert it into a different, but related data set. These processes will
fall into a number of categories: recognition, parsing, filtering, and transformation.

Example data: the CD file
To discuss these processes, let’s assume that we have a text file containing a descrip-
tion of my CD collection. For each CD, we’ll list the artist, title, recording label,
and year of release. Additionally the file will contain information on the date on
which it was generated and the number of records in the file. Figure 1.1 shows what
this file looks like with the various parts labeled.

Each row of data in the file (i.e., the information about one CD) is called a data
record. Each individual item of data (e.g., the CD title or year of release) is called a
data field. In addition to records and fields, the data file might contain additional
information that is held in headers or footers. In this example the header contains a

munge (muhnj) vt. 1. [derogatory] To imperfectly transform information. 2. A com-
prehensive rewrite of a routine, a data structure, or the whole program. 3. To mod-
ify data in some way the speaker doesn’t need to go into right now or cannot
describe succinctly (compare mumble).

The Jargon File <http://www.tuxedo.org/~esr/jargon/html/entry/munge.html>

What is data munging? 5
description of the data, followed by a header row which describes the meaning of
each individual data field. The footer contains the number of records in the file. This
can be useful to ensure that we have processed (or even received) the whole file.

We will return to this example throughout the book to demonstrate data mung-
ing techniques.

1.1.2 Data recognition

You won’t be able to do very much with this data unless you can recognize what
data you have. Data recognition is about examining your source data and working
out which parts of the data are of interest to you. More specifically, it is about a
computer program examining your source data and comparing what it finds against
pre-defined patterns which allow it to determine which parts of the data represent
the data items that are of interest.

In our CD example there is a lot of data and the format varies within different
parts of the file. Depending on what we need to do with the data, the header and
footer lines may be of no interest to us. On the other hand, if we just want to report
that on Sept. 16, 1999 I owned six CDs, then all the data we are interested in is in
the header and footer records and we don’t need to examine the actual data records
in any detail.

An important part of recognizing data is realizing what context the data is found
in. For example, data items that are in header and footer records will have to be
processed completely differently from data items which are in the body of the data.

It is therefore very important to understand what our input data looks like and
what we need to do with it.

Dave's Record Collection
16 Sep 1999

Artist

Bragg, Billy
Black, Mary
Black, Mary
Bowie, David

Bragg, Billy Worker's Playtime Cooking Vinyl 1987

Title Label Released

Mermaid Avenue EMI 1998
The Holy Ground 1993
Circus Grapevine 1996
Hunky Dory RCA 1971

Bowie, David Earthling EMI 1997

6 Records

Grapevine

Figure 1.1 Sample data file

One data record

Data footer

Data header

One data field

6 CHAPTER

Data, data munging, and Perl
1.1.3 Data parsing

Having recognized your data you need to be able to do something with it. Data
parsing is about taking your source data and storing it in data structures that make
it easier for you to carry out the rest of the required processes.

If we are parsing our CD file, we will presumably be storing details of each CD in
a data structure. Each CD may well be an element in a list structure and perhaps the
header and footer information will be in other variables. Parsing will be the process
that takes the text file and puts the useful data into variables that are accessible from
within our program.

As with data recognition, it is far easier to parse data if you know what you are
going to do with it, as this will affect the kinds of data structures that you use.

In practice, many data munging programs are written so that the data recogni-
tion and data parsing phases are combined.

1.1.4 Data filtering

It is quite possible that your source data contains too much information. You will
therefore have to reduce the amount of data in the data set. This can be achieved in
a number of ways.

■ You can reduce the number of records returned. For example, you could list
only CDs by David Bowie or only CDs that were released in the 1990s.

■ You can reduce the number of fields returned. For example, you could list only
the artist, title, and year of release of all of the CDs.

■ You can summarize the data in a variety of ways. For example, you could list
only the total number of CDs for each artist or list the number of CDs
released in a certain year.

■ You can perform a combination of these processes. For example, you could list
the number of CDs by Billy Bragg.

1.1.5 Data transformation

Having recognized, parsed, and filtered our data, it is very likely that we need to
transform it before we have finished with it. This transformation can take a variety
of forms.

■ Changing the value of a data field—For example, a customer number needs
to be converted to a different identifier in order for the data to be used in a
different system.

Why is data munging important? 7
■ Changing the format of the data record—For example, in the input record, the
fields were separated by commas, but in the output record they need to be
separated by tab characters.

■ Combining data fields—In our CD file example, perhaps we want to make the
name of the artist more accessible by taking the “surname, forename” format
that we have and converting it to “forename surname.”

1.2 Why is data munging important?

As I mentioned previously, data munging is at the heart of what most computer sys-
tems do. Just about any computer task can be seen as a number of data munging
tasks. Twenty years ago, before everyone had a PC on a desk, the computing
department of a company would have been known as the Data Processing depart-
ment as that was their role—they processed data. Now, of course, we all deal with
an Information Systems or Information Technology department and the job has
more to do with keeping our PCs working than actually doing any data processing.
All that has happened, however, is that the data processing is now being carried out
by everyone, rather than a small group of computer programmers and operators.

1.2.1 Accessing corporate data repositories

Large computer systems still exist. Not many larger companies run their payroll sys-
tem on a PC and most companies will have at least one database system which con-
tains details of clients, products, suppliers, and employees. A common task for many
office workers is to input data into these corporate data repositories or to extract
data from them. Often the data to be loaded onto the system comes in the form of
a spreadsheet or a comma-separated text file. Often the data extracted will go into
another spreadsheet where it will be turned into tables of data or graphs.

1.2.2 Transferring data between multiple systems

It is obviously convenient for any organization if its data is held in one format in
one place. Every time you duplicate a data item, you increase the likelihood that the
two copies can get out of step with each other. As part of any database design
project, the designers will go through a process known as normalization which
ensures that data is held in the most efficient way possible.

It is equally obvious that if data is held in only one format, then it will not be in
the most appropriate format for all of the systems that need to access that data.
While this format may not be particularly convenient for any individual system, it
should be chosen to allow maximum flexibility and ease of processing to simplify
conversion into other formats. In order to be useful to all of the people who want

8 CHAPTER

Data, data munging, and Perl
to make use of the data, it will need to be transformed in various ways as it moves
from one system to the next.

This is where data munging comes in. It lives in the interstices between compu-
ter systems, ensuring that data produced by one system can be used by another.

1.2.3 Real-world data munging examples

Let’s look at a couple of simple examples where data munging can be used. These
are simplified accounts of tasks that I carried out for large investment banks in the
city of London.

Loading multiple data formats into a single database
In the first of these examples, a bank was looking to purchase some company
accounting data to drive its equities research department. In any large bank the
equity research department is full of people who build complex financial models of
company performance in order to try to predict future performance, and hence
share price. They can then recommend shares to their clients who buy them and
(hopefully) get a lot richer in the process.

This particular bank needed more data to use in its existing database of company
accounting data. There are many companies that supply this data electronically and
a short list of three suppliers had been drawn up and a sample data set had been
received from each. My task was to load these three data sets, in turn, onto the
existing database.

The three sets of data came in different formats. I therefore decided to design a
canonical file format and write a Perl script that would load that format onto the
database. I then wrote three other Perl scripts (one for each input file) which read
the different input files and wrote a file in my standard format. In this case I was
reading from a number of sources and writing to one place.

Sharing data using a standard data format
In the second example I was working on a trading system which needed to send
details of trades to various other systems. Once more, the data was stored in a rela-
tional database. In this case the bank had made all interaction between systems
much easier by designing an XML file format1 for data interchange. Therefore, all
we needed to do was to extract our data, create the necessary XML file, and send it
on to the systems that required it. By defining a standard data format, the bank

1 The definition of an XML file format is known as a Document Type Definition (DTD), but we’ll get to
that in chapter 10.

Where does data come from? Where does it go? 9
ensured that all of its systems would only need to read or write one type of file,
thereby saving a large amount of development time.

1.3 Where does data come from? Where does it go?

As we saw in the previous section, the point of data munging is to take data in one
format, carry out various transformations on it, and write it out in another format.
Let’s take a closer look at where the data might come from and where it might go.

First a bit of terminology. The place that you receive data from is known as your
data source. The place where you send data to is known as your data sink.

Sources and sinks can take a number of different forms. Some of the most com-
mon ones that you will come across are:

■ Data files
■ Databases
■ Data pipes

Let’s look at these data sources and sinks in more detail.

1.3.1 Data files

Probably the most common way to transfer data between systems is in a file. One
application writes a file. This file is then transferred to a place where your data
munging process can pick it up. Your process opens the file, reads in the data, and
writes a new file containing the transformed data. This new file is then used as the
input to another application elsewhere.

Data files are used because they represent the lowest common denominator
between computer systems. Just about every computer system has the concept of a
disk file. The exact format of the file will vary from system to system (even a plain
ASCII text file has slightly different representations under UNIX and Windows) but
handling that is, after all, part of the job of the data munger.

File transfer methods
Transferring files between different systems is also something that is usually very
easy to achieve. Many computer systems implement a version of the File Transfer
Protocol (FTP) which can be used to copy files between two systems that are con-
nected by a network. A more sophisticated system is the Network File System (NFS)
protocol, in which file systems from one computer can be viewed as apparently local
files systems on another computer. Other common methods of transferring files are
by using removable media (CD-ROMs, floppy disks, or tapes) or even as a MIME
attachment to an email message.

10 CHAPTER

Data, data munging, and Perl
Ensuring that file transfers are complete
One difficulty to overcome with file transfer is the problem of knowing if a file is
complete. You may have a process that sits on one system, monitoring a file system
where your source file will be written by another process. Under most operating
systems the file will appear as soon as the source process begins to write it. Your
process shouldn’t start to read the file until it has all been transferred. In some
cases, people write complex systems which monitor the size of the file and trigger
the reading process only once the file has stopped growing. Another common solu-
tion is for the writing process to write another small flag file once the main file is
complete and for the reading process to check for the existence of this flag file. In
most cases a much simpler solution is also the best—simply write the file under a
different name and only rename it to the expected name once it is complete.

Data files are most useful when there are discrete sets of data that you want to
process in one chunk. This might be a summary of banking transactions sent to an
accounting system at the end of the day. In a situation where a constant flow of data
is required, one of the other methods discussed below might be more appropriate.

1.3.2 Databases

Databases are becoming almost as ubiquitous as data files. Of course, the term
“database” means vastly differing things to different people. Some people who are
used to a Windows environment might think of dBase or some similar nonrelational
database system. UNIX users might think of a set of DBM files. Hopefully, most
people will think of a relational database management system (RDBMS), whether it
is a single-user product like Microsoft Access or Sybase Adaptive Server Anywhere,
or a full multi-user product such as Oracle or Sybase Adaptive Server Enterprise.

Imposing structure on data
Databases have advantages over data files in that they impose structure on your
data. A database designer will have defined a database schema, which defines the
shape and type of all of your data objects. It will define, for example, exactly which
data items are stored for each customer in the database, which ones are optional and
which ones are mandatory. Many database systems also allow you to define relation-
ships between data objects (for example, “each order must contain a customer iden-
tifier which must relate to an existing customer”). Modern databases also contain
executable code which can define some of your business logic (for example, “when
the status of an order is changed to ‘delivered,’ automatically create an invoice
object relating to that order”).

Of course, all of these benefits come at a price. Manipulating data within a data-
base is potentially slower than equivalent operations on data files. You may also

Where does data come from? Where does it go? 11
need to invest in new hardware as some larger database systems like to have their
own CPU (or CPUs) to run on. Nevertheless, most organizations are prepared to
pay this price for the extra flexibility that they get from a database.

Communicating with databases
Most modern databases use a dialect of Structured Query Language (SQL) for all of
their data manipulation. It is therefore very likely that if your data source or sink is an
RDBMS that you will be communicating with it using SQL. Each vendor’s RDBMS
has its own proprietary interface to get SQL queries into the database and data back
into your program, but Perl now has a vendor-independent database interface (called
DBI) which makes it much easier to switch processing between different databases.2

1.3.3 Data pipes

If you need to constantly monitor data that is being produced by a system and
transform it so it can be used by another system (perhaps a system that is monitor-
ing a real-time stock prices feed), then you should look at using a data pipe. In this
system an application writes directly to the standard input of your program. Your
program needs to read data from its input, deal with it (by munging it and writing it
somewhere), and then go back to read more input. You can also create a data pipe
(or continue an existing one) by writing your munged data to your standard out-
put, hoping that the next link in the pipe will pick it up from there.

We will look at this concept in more detail when discussing the UNIX “filter”
model in chapter 2.

1.3.4 Other sources/sinks

There are a number of other types of sources and sinks. Here, briefly, are a few
more that you might come across. In each of these examples we talk about receiving
data from a source, but the concepts apply equally well to sending data to a sink.

■ Named Pipe—This is a feature of many UNIX-like operating systems. One
process prepares to write data to a named pipe which, to other processes,
looks like a file. The writing process waits until another process tries to read
from the file. At that point it writes a chunk of data to the named pipe, which
the reading process sees as the contents of the file. This is useful if the reading
process has been written to expect a file, but you want to write constantly
changing data.

2 As long as you don’t make any use of vendor-specific features.

12 CHAPTER

Data, data munging, and Perl
■ TCP/IP Socket—This is a good way to send a stream of data between two
computers that are on the same network.3 The two systems define a TCP/IP
port number through which they will communicate. The data munging pro-
cess then sets itself up as a TCP/IP server and listens for connections on the
right port. When the source has data to send, it instigates a connection on the
port. Some kind of (application-defined) handshaking then takes place, fol-
lowed by the source sending the data across to the waiting server.

■ HTTP 4—This method is becoming more common. If both programs have
access to the Internet, they can be on opposite sides of the world and can still
talk to each other. The source simply writes the data to a file somewhere on
the publicly accessible Internet. The data munging program uses HTTP to
send a request for the file to the source’s web server and, in response, the web
server sends the file. The file could be an HTML file, but it could just as easily
be in any other format. HTTP also has some basic authentication facilities
built into it, so it is feasible to protect files to which you don’t want the pub-
lic to have access.

1.4 What forms does data take?

Data comes in many different formats. We will be examining many formats in
more detail later in the book, but for now we’ll take a brief survey of the most pop-
ular ones.

1.4.1 Unstructured data

While there is a great deal of unstructured data in the world, it is unlikely that you
will come across very much of it, because the job of data munging is to convert data
from one structure to another. It is very difficult for a computer program to impose
structure on data that isn’t already structured in some way. Of course, one common
data munging task is to take data with no apparent structure and bring out the
structure that was hiding deep within it.

The best example of unstructured data is plain text. Other than separating text
into individual lines and words and producing statistics, it is difficult to do much
useful work with this kind of data.

3 Using the term “network” in a very wide sense. Most Internet protocols are based on TCP/IP so that
while your modem is dialed into your Internet Service Provider, your PC is on the same network as the
web server that you are downloading MP3s from.

4 Strictly speaking, HTTP is just another protocol running on top of TCP/IP, but it is important enough
to justify discussing it separately.

What forms does data take? 13
Nonetheless, we will examine unstructured data in chapter 5. This is largely
because it will give us the chance to discuss some general mechanisms, such as read-
ing and writing files, before moving on to better structured data.

1.4.2 Record-oriented data

Most of the simple data that you will come across will be record-oriented. That is,
the data source will consist of a number of records, each of which can be processed
separately from its siblings. Records can be separated from each other in a number
of ways. The most common way is for each line in a text file to represent one
record,5 but it is also possible that a blank line or a well-defined series of characters
separates records.

Within each record, there will probably be fields, which represent the various
data items of the record. These will also be denoted in several different ways. There
may well be a particular character between different fields (often a comma or a tab),
but it is also possible that a record will be padded with spaces or zeroes to ensure
that it is always a given number of characters in width.

We will look at record-oriented data in chapter 6.

1.4.3 Hierarchical data

This is an area that will be growing in importance in the coming years. The best
example of hierarchical data is the Standardized General Mark-up Language
(SGML), and its two better known offspring, the Hypertext Mark-up Language
(HTML) and the Extensible Mark-up Language (XML). In these systems, each data
item is surrounded by tags which denote its position in the hierarchy of the data. A
data item is contained by its parent and contains its own children.6 At this point,
the record-at-a-time processing methods that we will have been using on simpler
data types no longer work and we will be forced to find more powerful tools.

We will look at hierarchical data (specifically HTML and XML) in chapters 9
and 10.

1.4.4 Binary data

Finally, there is binary data. This is data that you cannot successfully use without
software which has been specially designed to handle it. Without having access to an
explanation of the structure of a binary data file, it is very difficult to make any sense

5 There is, of course, potential for confusion over exactly what constitutes a line, but we’ll discuss that in
more detail later.

6 This family metaphor can, of course, be taken further. Two nodes which have the same parent are known
as sibling nodes, although I’ve never yet heard two nodes with the same grandparents described as cousins.

14 CHAPTER

Data, data munging, and Perl
of it. We will take a look at some publicly available binary file formats and see how
to get some meaningful data out of them.

We will look at binary data in chapter 7.

1.5 What is Perl?

Perl is a computer programming language that has been in use since 1987. It was
initially developed for use on the UNIX operating system, but it has since been
ported to more operating systems than just about any other programming language
(with the possible exception of C).

Perl was written by Larry Wall to solve a particular problem, but instead of writ-
ing something that would just solve the question at hand, Wall wrote a general tool
that he could use to solve other problems later.

What he came up with was just about the most useful data processing tool that
anyone has created.

What makes Perl different from many other computer languages is that Wall has
a background in linguistics and brought a lot of this knowledge to bear in the
design of Perl’s syntax. This means that a lot of the time you can say things in a
more natural way in Perl and the code will mean what you expect it to mean.

For example, most programming languages have an if statement which you can
use to write something like this:

if (condition) {
do_something();

}

but what happens if you want to do some special processing only if the condition is
false? Of course you can often write something like:

if (not condition) {
do_something()

}

but it’s already starting to look a bit unwieldy. In Perl you can write:

unless (condition) {
do_something()

}

which reads far more like English. In fact you can even write:

do_something() unless condition;

which is about as close to English as a programming language ever gets.

What is Perl? 15
A Perl programmer once explained to me the moment when he realized that Perl
and he were made for each other was when he wrote some pseudocode which
described a possible solution to a problem and accidentally ran it through the Perl
interpreter. It ran correctly the first time.

As another example of how Perl makes it easier to write code that is easier to
read, consider opening a file. This is something that just about any kind of program
has to do at some point. This is a point in a program where error checking is very
important, and in many languages you will see large amounts of code surrounding a
file open statement. Code to open a file in C looks like this:

if ((f = fopen("file.txt", "r")) == NULL) {
perror("file.txt");

exit(0);

}

whereas in Perl you can write it like this:

open(FILE, 'file.txt') or die "Can't open file.txt: $!";

This opens a file and assigns it to the file handle FILE which you can later use to
read data from the file. It also checks for errors and, if anything goes wrong, it kills
the program with an error message explaining exactly what went wrong. And, as a
bonus, once more it almost reads like English.

Perl is not for everyone. Some people enjoy the verbosity of some other lan-
guages or the rigid syntax of others. Those who do make an effort to understand
Perl typically become much more effective programmers.

Perl is not for every task. Many speed-critical routines are better written in C or
assembly language. In Perl, however, it is possible to split these sections into separate
modules so that the majority of the program can still be written in Perl if desired.

1.5.1 Getting Perl

One of the advantages of Perl is that it is free.7 The source code for Perl is available
for download from a number of web sites. The definitive site to get the Perl source
code (and, indeed, for all of your other Perl needs) is www.perl.com, but the Perl
source is mirrored at sites all over the world. You can find the nearest one to you
listed on the main site. Once you have the source code, it comes with simple instruc-
tions on how to build and install it. You’ll need a C compiler and a make utility.8

7 Free as in both the “free speech” and “free beer” meanings of the word. For a longer discussion of the
advantages of these, please visit the Free Software Foundation at www.fsf.org.

8 If you don’t have these, then you can get copies of the excellent gcc and GNU make from the Free Soft-
ware Foundation.

16 CHAPTER

Data, data munging, and Perl
Downloading source code and compiling your own tools is a common procedure
on UNIX systems. Many Windows developers, however, are more used to installing
prepackaged software. This is not a problem, as they can get a prebuilt binary called
ActivePerl from ActiveState at www.activestate.com. As with other versions of Perl,
this distribution is free.

1.6 Why is Perl good for data munging?

Perl has a number of advantages that make it particularly useful as a data munging
language. Let’s take a look at a few of them.

■ Perl is interpreted—Actually Perl isn’t really interpreted, but it looks as
though it is to the programmer. There is no separate compilation phase that
the programmer needs to run before executing a Perl program. This makes
the development of a Perl program very quick as it frees the programmer
from the edit-compile-test-debug cycle, which is typical of program develop-
ment in languages like C and C++.

■ Perl is compiled—What actually happens is that a Perl program is compiled
automatically each time it is run. This gives a slight performance hit when the
program first starts up, but means that once the program is running you
don’t get any of the performance problems that you would from a purely
interpreted language.

■ Perl has powerful data recognition and transformation features—A lot of data
munging consists of recognizing particular parts of the input data and then
transforming them. In Perl this is often achieved by using regular expressions.
We will look at regular expressions in some detail later in the book, but at this
point it suffices to point out that Perl’s regular expression support is second
to none.

■ Perl supports arbitrarily complex data structures—When munging data, you
will usually want to build up internal data structures to store the data in
interim forms before writing it to the output file. Some programming lan-
guages impose limits on the complexity of internal data structures. Since the
introduction of Perl 5, Perl has had no such constraints.

■ Perl encourages code reuse—You will often be munging similar sorts of data in
similar ways. It makes sense to build a library of reusable code to make writ-
ing new programs easier. Perl has a very powerful system for creating mod-
ules of code that can be slotted into other scripts very easily. In fact, there is a
global repository of reusable Perl modules available across the Internet at
www.cpan.org. CPAN stands for the Comprehensive Perl Archive Network. If

Summary 17
someone else has previously solved your particular problem then you will find
a solution there. If you are the first person to address a particular problem,
once you’ve solved it, why not submit the solution to the CPAN. That way
everyone benefits.

■ Perl is fun—I know this is a very subjective opinion, but the fact remains that
I have seen jaded C programmers become fired up with enthusiasm for their
jobs once they’ve been introduced to Perl. I’m not going to try to explain it,
I’m just going to suggest that you give it a try.

1.7 Further information

The best place to get up-to-date information about Perl is the Perl home page at
www.perl.com.

Appendix B contains a brief overview of the Perl language, but if you want to
learn Perl you should look at one of the many Perl tutorial books. If you are a non-
programmer then Elements of Programming with Perl by Andrew Johnson (Man-
ning) would be a good choice. Programmers looking to learn a new language should
look at Learning Perl (2nd edition) by Randal Schwartz and Tom Christiansen
(O’Reilly) or Perl: The Programmer’s Companion by Nigel Chapman (Wiley).

The definitive Perl reference book is Programming Perl (3rd edition) by Larry
Wall, Tom Christiansen and Jon Orwant (O’Reilly).

Perl itself comes with a huge amount of documentation. Once you have
installed Perl, you can type perldoc perl at your command line to get a list of the
available documents.

1.8 Summary

■ Data munging is the process of taking data from one system (a data source)
and converting it so that it is suitable for use by a different system (a data sink).

■ Data munging consists of four stages—data recognition, parsing, filtering,
and transformation.

■ Data can come from (and be written to) a large number of different types of
sources and sinks.

■ Data itself can take a large number of forms, text or binary, unstructured or
structured, record oriented or hierarchical.

■ Perl is a language which is very well suited for the whole range of data mung-
ing jobs.

2General munging
practices
What this chapter covers:
■ Processes for munging data
■ Data structure designs
■ Encapsulating business rules
■ The UNIX filter model
■ Writing audit trails
18

Decouple input, munging, and output processes 19
When munging data there are a number of general principles which will be useful
across a large number of different tasks. In this chapter we will take a look at some
of these techniques.

2.1 Decouple input, munging, and output processes

When written in pseudocode, most data munging tasks will look very similar. At the
highest level, the pseudocode will look something like this:

Read input data
Munge data
Write output data

Obviously, each of these three subtasks will need to be broken down into greater
detail before any real code can be written; however, looking at the problem from
this high level can demonstrate some useful general principles about data munging.

 Suppose that we are combining data from several systems into one database. In
this case our different data sources may well provide us with data in very different
formats, but they all need to be converted into the same format to be passed on to
our data sink. Our lives will be made much easier if we can write one output routine
that handles writing the output from all of our data inputs. In order for this to be
possible, the data structures in which we store our data just before we call the com-
bined output routines will need to be in the same format. This means that the data
munging routines need to leave the data in the same format, no matter which of the
data sinks we are dealing with. One easy way to ensure this is to use the same data
munging routines for each of our data sources. In order for this to be possible, the
data structures that are output from the various data input routines must be in the
same format. It may be tempting to try to take this a step further and reuse our
input routines, but as our data sources can be in completely different formats, this is
not likely to be possible. As figures 2.1 and 2.2 show, instead of writing three

Data
Input

A

Data
Source

A

Data
Output

A

Data
Munge

A

Data
Input

B

Data
Source

B

Data
Output

B

Data
Munge

B

Data
Sink

Figure 2.1 Separate munging and output processes

20 CHAPTER

General munging practices
routines for each data source, we now need only write an input routine for each
source with common munging and output routines.

 A very similar argument can be made if we are taking data from one source and
writing it to a number of different data sinks. In this case, only the data output
routines need to vary from sink to sink and the input and munging routines can
be shared.

 There is another advantage to this decoupling of the various stages of the task. If
we later need to read data from the same data source, or write data to the same data
sink for another task, we already have code that will do the reading or writing for us.
Later in this chapter we will look at some ways that Perl helps us to encapsulate these
routines in reusable code libraries.

2.2 Design data structures carefully

Probably the most important way that you can make your data munging code (or,
indeed, any code) more efficient is to design the intermediate data structures care-
fully. As always in software design, there are compromises to be made, but in this
section we will look at some of the factors that you should consider.

2.2.1 Example: the CD file revisited

As an example, let’s return to the list of compact disks that we discussed in
chapter 1. We’ll assume that we have a tab-separated text file where the columns are
artist, title, record label, and year of release. Before considering what internal data
structures we will use, we need to know what sort of output data we will be creat-
ing. Suppose that we needed to create a list of years, together with the number of
CDs released in that year.

Data
Input

A

Data
Source

A

Data
Output

Data
Munge

Data
Input

B

Data
Source

B

Data
Sink

Figure 2.2 Combined munging and output processes

Design data structures carefully 21
Solution 1: simple hash
The immediately obvious solution is to use a hash in which the keys are years and
the values are the numbers of CDs. In this case, there will be no need for a separate
data munging process, as all of the required munging will be carried out in the
input routine. We might create a first draft script something like this:

my %years;
while (<STDIN>) {

chomp;
my $year = (split /\t/)[3];

$years{$year}++;
}

foreach (sort keys %years) {
print "In $_, $years{$_} CDs were released.\n";

}

This provides a solution to our problem in a reasonably
efficient manner. The data structure that we build is very
simple and is shown in figure 2.3.

Solution 2: adding flexibility
But how often are requirements as fixed as these?1 Sup-
pose later someone decides that, instead of having a list of
the number of CDs released, they also need a list of the
actual CDs. In this case, we will need to go back and
rewrite our script completely to something like this:

my %years;
while (<STDIN>) {

chomp;
my ($artist, $title, $label, $year) = split /\t/;

my $rec = {artist => $artist,
title => $title,
label => $label};

push @ {$year{$year}}, $rec;
}

foreach my $year (sort keys %years) {
my $count = scalar @{$years{$year}};
print "In $year, $count CDs were released.\n";
print “They were:\n”;
print map { "$_->{title} by $_->{artist}\n" } @{$years{$year}};

}

1 There are, of course, many times when the requirements won’t change—because this is a one-off data load
process or you are proving a concept or building a prototype.

1971

1987

1993

1996

1997

1998

1

1

1

1

1

1

Figure 2.3 Initial data

structure design

22 CHAPTER

General munging practices
As you can see, this change has entailed an almost complete rewrite of the script. In
the new version, we still have a hash where the keys are the years, but each value is
now a reference to an array. Each element of this array is a reference to a hash which
contains the artist, title, and label of the CD. The output section has also grown
more complex as it needs to extract more information from the hash.

 Notice that the hash stores the CD’s label even though we don’t use it in the
output from the script. Although the label isn’t required in our current version, it is
quite possible that it will become necessary to add it to the output at some point in
the future. If this happens we will no longer need to make any changes to the input
section of our script as we already have the data available in our hash. This is, in
itself, an important data munging principle—if you’re reading in a data item, you
may as well store it in your data structure. This can be described more succinctly as
“Don’t throw anything away.” This improved data structure is shown in figure 2.4.

Solution 3: separating parsing from munging
What happens, however, if the requirements change completely so that we now
need to display counts by artist for a different report? Our current script is of no use
at all. There is no part of it that is reusable to help us achieve our new goals. Per-
haps we need to rethink our strategy from the start.

 In all of the scripts above we were not following the advice of the previous sec-
tion. We were trying to do too much in the input section and left ourselves nothing
to do in the data munging section. Perhaps if we went back to a more decoupled
approach, we would have more success.

 This leaves us contemplating our original question again—what structure would
offer the best way to represent our data inside the program? Let’s take another look
at the data. What we have is a list of records, each of which has a well-defined set of
attributes. We could use either a hash or an array to model our list of records and we
have the same choices to model each individual record. In this case we will use an

1971

1987
1993

1996

1997

1998

arrayref

arrayref
arrayref

arrayref

arrayref

arrayref

artist

title

label

David Bowie

Hunky Dory

RCA

0 hashref

Figure 2.4 Improved data structure design

Design data structures carefully 23
array of hashes2 to model our data. A good argument could be made for just about
any other combination of arrays and hashes, but the representation that I have cho-
sen seems more natural to me. Our input routine will therefore look like this:

my @CDs;
sub input {

my @attrs = qw(artist title label year);
while (<STDIN>) {

chomp;
my %rec;
@rec{@attrs} = split /\t/;
push @CDs, \%rec;

}
}

This third and final data structure is shown in figure 2.5.

More examples: using our flexible data structure
Based on this data structure, we can then write any number of data munging rou-
tines to produce specific output reports. For example, to produce our original list of
the CDs released in a year we would write a routine like this:

sub count_cds_by_year {
my %years;

foreach (@CDs) {
$years{$_->{year}}++;

}

return \%years;
}

This routine returns a reference to a hash which is identical in structure to our orig-
inal hash and can therefore be printed out using code identical to the output section
of our original script.

2 Or, more accurately, an array of references to hashes.

0

1

2

3

4

5

hashref

hashref

hashref

hashref

hashref

hashref

artist

title

label

David Bowie

Hunky Dory

RCA

year 1971

Figure 2.5

Final data structure

24 CHAPTER

General munging practices
 To produce a list of the number of CDs released by each artist we can write a
similar routine like this:

sub count_cds_by_artist {
my %artists;

foreach (@CDs) {
$artists{$_->{artist}}++;

}

return \%artists;
}

In fact these two routines are so similar, that it is possible to write a generic version
which handles both of these cases (along with the cases where you want to count
CDs by label or even by title).

sub count_cds_by_attr {
my $attr = shift;

my %counts;

foreach (@CDs) {
$counts{$_->{$attr}}++;

}

return \%counts;
}

A complete program to produce counts of CDs by any attribute which is passed in
on the command line would look like this:

#!/usr/bin/perl -w

use strict;

my @CDs;

sub input {
my @attrs = qw(artist title label year);
while (<STDIN>) {

chomp;
my %rec;
@rec{@attrs} = split /\t/;
push @CDs, \%rec;

}
}

sub count_cds_by_attr {
my $attr = shift;

my %counts;

foreach (@CDs) {
$counts{$_->{$attr}}++;

Encapsulate business rules 25
}
return \%counts;

}

sub output {
my $counts = shift;
foreach (sort keys %{$counts}) {

print "$_: $counts->{$_}\n";
}

}

my $attr = shift;

input();
my $counts = count_cds_by_attr($attr);
output($counts);

And, assuming that the program file is called count_cds.pl and you have the CD list
in a file called cd.txt, it would be called like this:

count_cds.pl year < cds.txt > cds_by_year.txt
count_cds.pl label < cds.txt > cds_by_label.txt
count_cds.pl artist < cds.txt > cds_by_artist.txt
count_cds.pl title < cds.txt > cds_by_title.txt

In most cases you will have to make similar decisions when designing data structures.
A data structure that is designed for one job will, in general, be simpler than one that
is designed to be more flexible. It is up to you to decide whether it is worth taking
the extra effort to make the design more flexible. (A hint—it usually is!)

2.3 Encapsulate business rules

Much of the logic in your data munging programs will be modeling what might be
described as “business rules.” These are the rules about what particular data items
mean, what their valid sets of values are, and how they relate to other values in the
same or other records.3 Examples of these three types of business rules are:

■ Customer number is a unique identifier for a customer.
■ Customer number is always in the format CUS-XXXXX, where XXXXX is a

unique integer.
■ Each customer record must be linked to a valid salesperson record.

3 I’ve described these constraints as “business rules,” as I think that’s easier to remember than something
like “domain specific constraints.” Of course, what you’re encoding might well have nothing to do
with “business.”

26 CHAPTER

General munging practices
 In any system where these data items are used, the business rules must always
hold true. No matter what your program does to a customer record, the customer
number must remain unique and in the given format, and the customer must be
linked to a valid salesperson record. Nothing that you do to a customer record is
allowed to leave the data in a state that breaks any of these rules.

2.3.1 Reasons to encapsulate business rules

In a real-world system, there will probably be many other programs that are access-
ing the same data items for their own purposes. Each of these other programs will
have to abide by exactly the same set of business rules for each customer record that
it accesses. Therefore each of these programs will have logic within it that encodes
these rules. This can lead to a couple of problems:

■ It is possible that not every programmer who writes these programs has
exactly the same understanding of the rules. Therefore, each program may
have subtly different interpretations of the rules.

■ At some point in the future these rules may be changed. When this happens,
the same changes in logic will need to be made to each of the programs that
use the existing business rules. This may be a large job, and the more times
the changes have to be made, the higher the chance that errors will creep in.

2.3.2 Ways to encapsulate business rules

The most common solution to both of these problems is to write code that models
the business rules in one place and to reuse that code in each program that needs to
use the rules. Most programming languages have a facility that allows code to be
reused across many programs, and Perl has a particularly powerful implementation
of this functionality.

 In Perl you would create a module that contains the business rules for a particu-
lar type of business record (say, a customer) and include this module in any other
Perl programs that needed to understand the business rules that control the use of
customer records. In fact, Perl gives you a couple of ways to implement this func-
tionality. If your rules are relatively simple you can write a module that contains
functions called things like get_next_custno or save_cust_record which get
called at relevant points in your programs. For a more robust solution, you should
consider writing a Perl object to implement your customer record. Let’s look at
examples of both of these approaches.

Encapsulate business rules 27
2.3.3 Simple module

Assume that we want to model the three business rules mentioned at the start of
this section. We will write a module called Customer_Rules.pm that will contain
the two functions get_next_cust_no and save_cust_record which we sug-
gested above. The following example omits some of the lower level functions.

package Customer_Rules;

use strict;
use Carp;
use vars qw(@EXPORT @ISA);

@EXPORT = qw(get_next_cust_no save_cust_record);
@ISA = qw(Exporter);

require Exporter;

sub get_next_cust_no {
my $prev_cust = get_max_cust_no()

|| croak "Can't allocate new customer reference.\n";

my ($prev_no) = $prev_cust =~ /(\d+)/;
$prev_no++;

return "CUS-$prev_no";
}

sub save_cust_record {
my $cust = shift;

$cust->{cust_no} ||= get_next_cust_no();

is_valid_sales_ref($cust->{salesperson})
|| croak "Invalid salesperson ref: $cust->{salesperson}.";

write_sales_record($cust);
}

How Customer_Rules.pm works
In this example we have encapsulated our business rules in functions which, in turn,
make use of other lower level functions. These lower level functions haven’t been
shown, as they would contain implementation-specific details which would only
cloud the picture.

 In the get_next_cust_no function we begin by getting the customer number of
the most recently created customer record. This might be stored in a database table
or in a text file or in some other format. In all of these cases there will need to be
some kind of transaction-level locking to ensure that no other process gets the same
value for the previous customer number. This would potentially lead to nonunique
customer numbers in the system, which would break one of our business rules.

28 CHAPTER

General munging practices
 Having retrieved the previous customer number we simply extract the integer
portion, increment it, and return it with the string CUS- prepended to it.

 In the save_cust_record function, we assume that the customer record is
stored internally in some complex data structure and that we are passed a reference
to that structure. The first thing that we do is to ensure that we have a customer
number in the record. We then check that the $cust->{salesperson} value rep-
resents a valid salesperson in our system. Again, the list of valid salespeople could be
stored in a number of different forms. It may be possible that more data is required
in order to validate the salesperson code. For example, a salesperson may only deal
with customers in a certain region. In this case the region in which the customer is
based will also need to be passed into the is_valid_sales_ref function.

 Eventually, we get a true or false value back from is_valid_sales_ref and can
proceed appropriately. If the salesperson is valid, we can write the customer record to
whatever storage medium we are using; otherwise, we alert the user to the error. In a
real-world system many other similar checks would probably need to be carried out.

Using Customer_Rules.pm
Having produced this module, we can make it available to all programmers who are
writing applications by putting it into a project-wide library directory. To make use
of these functions, a programmer only needs to include the line:

use Customer_Rules;

in a program. The program will now have access to the get_next_cust_no and
save_cust_record functions. Therefore, we can ensure that every program has
the same interpretation of the business rules and, perhaps more importantly, if the
business rules change, we only need to change this module in order to change them
in each program.

2.3.4 Object class

While the module of the previous section is useful, it still has a number of problems;
not the least of which is the fact that the structure of the customer record is defined
elsewhere in the application. If the module is reused in a number of applications,
then each application will define its own customer record and it is possible that the
definitions will become out of step with each other. The solution to this problem is
to create an object class.

 An object defines both the structure of a data record and all of the methods used
to operate on the record. It makes the code far easier to reuse and maintain. A full
discussion of the advantages of object-oriented programming (OOP) is beyond the
scope of this book, but two very good places to get the full story are the perltoot
manual page and Damian Conway’s Object Oriented Perl (Manning).

Encapsulate business rules 29
 Let’s examine a cut-down customer object which is implemented in a module
called Customer.pm.

package Customer;

use strict;

sub new {
my $thing = shift;
my $self = {};

bless $self, ref($thing) || $thing;

$self->init(@_);
return $self;

}

sub init {
my $self = shift;

Extract various interesting things from
@_ and use them to create a data structure
that represents a customer.

}

sub validate {
my $self = shift;

Call a number of methods, each of which validates
one data item in the customer record.
return $self->is_valid_sales_ref

&& $self->is_valid_other_attr
&& $self->is_valid_another_attr;

}

sub save {
my $self = shift;

if ($self->validate) {
$self->{cust_no} ||= $self->get_next_cust_no;
return $self->write;

} else {
return;

}
}

Various other object methods are omitted here, for example
code to retrieve a customer object from the database or
write a customer object to the database.

1; # Because all modules should return a true value.

The advantage that this method has over the previous example is that in addition to
modeling the business rules that apply to a customer record, it defines a standard

30 CHAPTER

General munging practices
data structure to store customer data and a well defined set of actions that can be
performed on a customer record. The slight downside is that incorporating this
module into a program will take a little more work than simply using the functions
defined in our previous module.

Example: using Customer.pm
As an example of using this module, let’s look at a simple script for creating a cus-
tomer record. We’ll prompt the user for the information that we require.

use Customer;

my $cust = Customer->new;

print 'Enter new customer name: ';
my $name = <STDIN>;
$cust->name($name);

print 'Enter customer address: ';
my $addr = <STDIN>;
$cust->address($addr);

print 'Enter salesperson code: ';
my $sp_code = <STDIN>;
$cust->salesperson($sp_code);

Write code similar to that above to get any other
required data from the user.

if ($cust->save) {
print "New customer saved successfully.\n";
print "New customer code is ", $cust->code, "\n";

} else {
print "Error saving new customer.\n";

}

In this case we create an empty customer object by calling the Customer->new
method without any parameters. We then fill in the various data items in our cus-
tomer object with data input by the user. Notice that we assume that each customer
attribute has an access method which can be used to set or get the attribute value.4

4 This is a common practice. For example, the name method counts the number of parameters that have
been sent. If it has received a new value then it sets the customer’s name to that value; if not, it just returns
the previous value.

An alternative practice is to have two separate methods called get_name and set_name. Which approach
you use is a matter of personal preference. In either case, it is generally accepted that using access methods
is better than accessing the attributes directly.

Use UNIX “filter” model 31
 Having filled in all of the required data, we called $cust->save to save our
new record. If the save is successful, the code attribute will have been filled in and
we can display the new customer’s code to the user by way of the $cust->code
attribute access method.

 If, on the other hand, we wanted to access an existing customer record, we would
pass the customer to the Customer->new method (e.g., Customer->new(id =>
'CUS-00123')) and the init method would populate our object with the cus-
tomer’s data. We could then either use this data in some way or alternatively alter it
and use the save method to write the changed record back to the database.

2.4 Use UNIX “filter” model

UNIX filter programs give us a very good example to follow when it comes to building
a number of small, reusable utilities each of which is designed to carry out one task.

2.4.1 Overview of the filter model

Many operating systems, principally UNIX and its variants, support a feature called
I/O redirection. This feature is also supported in Microsoft Windows, although as
it is a command line feature, it is not used as much as it is in UNIX. I/O redirection
gives the user great flexibility over where a program gets its input and sends its
output. This is achieved by treating all program input and output as file input and
output. The operating system opens two special file handles called STDIN and
STDOUT, which, by default, are attached to the user’s keyboard and monitor.5 This
means that anything typed by the user on the keyboard appears to the program to
be read from STDIN and anything that the program writes to STDOUT appears on
the user’s monitor.

 For example, if a user runs the UNIX command

ls

then a list of files in the current directory will be written to STDOUT and will appear
on the user’s monitor.

 There are, however a number of special character strings that can be used to
redirect these special files. For example, if our user runs the command

ls > files.txt

then anything that would have been written to STDOUT is, instead, written to the file
files.txt. Similarly, STDIN can be redirected using the < character. For example,

5 In practice there is also a third file handle called STDERR which is a special output file to which error mes-
sages are written, but this file can be safely ignored for the purposes of this discussion.

32 CHAPTER

General munging practices
sort < files.txt

would sort our previously created file in lexical order (since we haven’t redirected
the output, it will go to the user’s monitor).

 Another, more powerful, concept is I/O pipes. This is where the output of one
process is connected directly to the input of another. This is achieved using the |
character. For example, if our user runs the command

ls | sort

then anything written to the STDOUT of the ls command (i.e., the list of files in the
current directory) is written directly to the STDIN of the sort command. The sort
command processes the data that appears on its STDIN, sorts that data, and writes
the sorted data to its STDOUT. The STDOUT for the sort command has not been
redirected and therefore the sorted list of files appears on the user’s monitor.

 A summary of the character strings used in basic I/O redirection is given in
table 2.1. More complex features are available in some operating systems, but the
characters listed are available in all versions of UNIX and Windows.

2.4.2 Advantages of the filter model

The filter model is a very useful concept and is fundamental to the way that UNIX
works. It means that UNIX can supply a large number of small, simple utilities, each
of which do one task and do it well. Many complex tasks can be carried out by
plugging a number of these utilities together. For example, if we needed to list all
of the files in a directory with a name containing the string “proj01” and wanted
them sorted in alphabetical order, we could use a combination of ls, sort, and
grep6 like this:

ls –1 | grep proj01 | sort

Table 2.1 Common I/O redirection

String Usage Description

> cmd > file Runs cmd and writes the output to file, overwriting whatever
was in file.

>> cmd >> file Runs cmd and appends the output to the end of file.

< cmd < file Runs cmd, taking input from file.

| cmd1 | cmd2 Runs cmd1 and passes any output as input to cmd2

6 Which takes a text string as an argument and writes to STDOUT only input lines that contain that text.

Use UNIX “filter” model 33
Most UNIX utilities are written to support this mode of usage. They are known as
filters as they read their input from STDIN, filter the data in a particular way, and
write what is left to STDOUT.

 This is a concept that we can make good use of in our data munging programs.
If we write our programs so that they make no assumptions about the files that they
are reading and writing (or, indeed, whether they are even reading from and writing
to files) then we will have written a useful generic tool, which can be used in a num-
ber of different circumstances.

Example: I/O independence
Suppose, for example, that we had written a program called data_munger which
munged data from one system into data suitable for use in another. Originally, we
might take data from a file and write our output to another. It might be tempting
to write a program that is called with two arguments which are the names of the
input and output files. The program would then be called like this:

data_munger input.dat output.dat

Within the script we would open the files and read from the input, munge the data,
and then write to the output file. In Perl, the program might look something like:

#!/usr/bin/perl –w

use strict;

my ($input, $output) = @ARGV;
open(IN, $input) || die "Can’t open $input for reading: $!";
open(OUT, ">$output") || die "Can’t open $output for writing: $!";

while (<IN>) {
print OUT munge_data($_);

}
close(IN) || die "Can't close $input: $!";
close(OUT) || die "Can't close $output: $!";

This will certainly work well for as long as we receive our input data in a file and are
expected to write our output data to another file. Perhaps at some point in the
future, the programmers responsible for our data source will announce that they
have written a new program called data_writer, which we should now use to
extract data from their system. This program will write the extracted data to its
STDOUT. At the same time the programmers responsible for our data sink announce
a new program called data_reader, which we should use to load data into their
system and which reads the data to be loaded from STDIN.

34 CHAPTER

General munging practices
 In order to use our program unchanged we will need to write some extra pieces
of code in the script which drives our program. Our program will need to be called
with code like this:

data_writer > input.dat
data_munger input.dat output.dat
data_reader < output.dat

This is already looking a little kludgy, but imagine if we had to make these changes
across a large number of systems. Perhaps there is a better way to write the origi-
nal program.

 If we had assumed that the program reads from STDIN and writes to STDOUT, the
program actually gets simpler and more flexible. The rewritten program looks like this:

#!/usr/bin/perl –w
while (<STDIN>) {

print munge_data($_);
}

Note that we no longer have to open the input and output files explicitly, as Perl
arranges for STDIN and STDOUT to be opened for us. Also, the default file handle to
which the print function writes is STDOUT; therefore, we no longer need to pass a
file handle to print. This script is therefore much simpler than our original one.

 When we’re dealing with input and output data files, our program is called
like this:

data_munger < input.dat > output.dat

and once the other systems want us to use their data_writer and data_reader
programs, we can call our program like this:

data_writer | data_munger | data_reader

and everything will work exactly the same without any changes to our program. As
a bonus, if we have to cope with the introduction of data_writer before
data_reader or vice versa, we can easily call our program like this:

data_writer | data_munger > output.dat

or this:

data_munger < input.dat | data_reader

and everything will still work as expected.
 Rather than using the STDIN file handle, Perl allows you to make your program

even more flexible with no more work, by reading input from the null file handle
like this:

Use UNIX “filter” model 35
#!/usr/bin/perl –w
while (<>) {

print munged_data($_);
}

In this case, Perl will give your program each line of every file that is listed on your
command line. If there are no files on the command line, it reads from STDIN. This
is exactly how most UNIX filter programs work. If we rewrote our data_munger
program using this method we could call it in the following ways:

data_munger input.dat > output.dat
data_munger input.dat | data reader

in addition to the methods listed previously.

Example: I/O chaining
Another advantage of the filter model is that it makes it easier to add new functional-
ity into your processing chain without having to change existing code. Suppose that
a system is sending you product data. You are loading this data into the database that
drives your company’s web site. You receive the data in a file called products.dat
and have written a script called load_products. This script reads the data from
STDIN, performs various data munging processes, and finally loads the data into the
database. The command that you run to load the file looks like this:

load_products < products.dat

What happens when the department that produces products.dat announces that
because of a reorganization of their database they will be changing the format of
your input file? For example, perhaps they will no longer identify each product with
a unique integer, but with an alphanumeric code. Your first option would be to
rewrite load_products to handle the new data format, but do you really want to
destabilize a script that has worked very well for a long time? Using the UNIX filter
model, you don’t have to. You can write a new script called translate_products
which reads the new file format, translates the new product code to the product
identifiers that you are expecting, and writes the records in the original format to
STDOUT. Your existing load_products script can then read records in the format
that it accepts from STDIN and can process them in exactly the same way that it
always has. The command line would look like this:

translate_products < products.dat | load_products

This method of working is known as chain extension and can be very useful in a
number of areas.

36 CHAPTER

General munging practices
 In general, the UNIX filter model is very powerful and often actually simplifies
the program that you are writing, as well as making your programs more flexible.
You should therefore consider using it as often as possible.

2.5 Write audit trails

When transforming data it is often useful to keep a detailed audit trail of what you
have done. This is particularly true when the end users of the transformed data
question the results of your transformation. It is very helpful to be able to trace
through the audit log and work out exactly where each data item has come from.
Generally, problems in the output data can have only one of two sources, either
errors in the input data or errors in the transformation program. It will make your
life much easier if you can quickly work out where the problem has arisen.

2.5.1 What to write to an audit trail

At different points in the life of a program, different levels of auditing will be appro-
priate. While the program is being developed and tested it is common practice to
have a much more detailed audit trail than when it is being used day to day in a pro-
duction environment. For this reason, it is often useful to write auditing code that
allows you to generate different levels of output depending on the value of a vari-
able that defines the audit level. This variable might be read from an environment
variable like this:

my $audit_level = $ENV{AUDIT_LEVEL} || 0;

In this example we set the value of $audit_level from the environment variable
AUDIT_LEVEL. If this level is not set then we default to 0, the minimum level. Later
in the script we can write code like:

print LOG 'Starting processing at ', scalar localtime, "\n"
if $audit_level > 0;

to print audit information to the previously opened file handle, LOG.
 Standards for audit trails will typically vary from company to company, but some

things that you might consider auditing are:
■ start and end times of the process
■ source and sink parameters (filenames, database connection parameters, etc.)
■ ID of every record processed
■ results of each data translation
■ final count of records processed

Write audit trails 37
2.5.2 Sample audit trail

A useful audit trail for a data munging process that takes data from a file and either
creates or updates database records might look like this:

Process: daily_upd started at 00:30:00 25 Mar 2000
Data source: /data/input/daily.dat
Data sink: database customer on server DATA_SERVER (using id 'maint')
Input record: D:CUS-00123
Action: Delete
Translation: CUS-00123 = database id 2364
Record 2364 deleted successfully
Input record: U:CUS-00124:Jones & Co| [etc …]
Action: Update
Translation: CUS-00124 = database id 2365
Record 2365 updated successfully
Input record: I:CUS-01000:Magnum Solutions Ltd| [etc …]
Action: Insert
Integrity Check: CUS-01000 does not exist on database
Record 3159 inserted successfully

[many lines omitted]

End of file on data source
1037 records processed (60 ins, 964 upd, 13 del)
Process: daily_upd complete at 00:43:14 25 Mar 2000

2.5.3 Using the UNIX system logs

Sometimes you will want to log your audit trail to the UNIX system log. This is a
centralized process in which the administrator of a UNIX system can control where
the log information for various processes is written. To access the system log from
Perl, use the Sys::Syslog module. This module contains four functions called
openlog, closelog, setlogmask, and syslog which closely mirror the function-
ality of the UNIX functions with the same names. For more details on these func-
tions, see the Sys::Syslog module’s documentation and your UNIX manual. Here
is an example of their use:

use Sys::Syslog;

openlog('data_munger.pl', 'cons', 'user');

then later in the program
syslog('info', 'Process started');

then later again

closelog();

Notice that as the system logger automatically timestamps all messages, we don’t
need to print the start time in our log message.

38 CHAPTER

General munging practices
2.6 Further information

For more information on writing objects in Perl see Object Oriented Perl by Damian
Conway (Manning).

 For more information about the UNIX filter model and other UNIX program-
ming tricks see The UNIX Programming Environment by Brian Kernigan and Rob
Pike (Prentice Hall) or UNIX Power Tools by Jerry Peek, Tim O’Reilly, and Mike
Loukides (O’Reilly).

 For more general programming advice see The Practice of Programming by
Brian Kernigan and Rob Pike (Addison-Wesley) and Programming Pearls by Jon
Bentley (Addison-Wesley).

2.7 Summary

■ Decoupling the various stages of your program can cut down on the code
that you have to write by making code more reusable.

■ Designing data structures carefully will make your programs more flexible.
■ Write modules or objects to encapsulate your business rules.
■ The UNIX filter model can make your programs I/O independent.
■ Always write audit logs.

3Useful Perl idioms
What this chapter covers:
■ Simple and complex sorts
■ The Orcish manoeuvre and the Schwartzian

and Guttman-Rosler transforms
■ Database Interface and database

driver modules
■ Benchmarking
■ Command line scripts
39

40 CHAPTER

Useful Perl idioms
There are a number of Perl idioms that will be useful in many data munging pro-
grams. Rather than introduce them in the text when they are first met, we will dis-
cuss them all here.

3.1 Sorting

Sorting is one of the most common tasks that you will carry out when data mung-
ing. As you would expect, Perl makes sorting very easy for you, but there are a few
niceties that we’ll come to later in this section.

3.1.1 Simple sorts

Perl has a built-in sort function which will handle simple sorts very easily. The syn-
tax for the sort function is as follows:

@out = sort @in;

This takes the elements of the list @in, sorts them lexically, and returns them in
array @out. This is the simplest scenario. Normally you will want something more
complex, so sort takes another argument which allows you to define the sort that
you want to perform. This argument is either the name of a subroutine or a block of
Perl code (enclosed in braces). For example, to sort data numerically1 you would
write code like this:

@out = sort numerically @in;

and a subroutine called numerically which would look like this:

sub numerically {
return $a <=> $b;

}

There are a couple of things to notice in this subroutine. First, there are two special
variables, $a and $b, which are used in the subroutine. Each time Perl calls the sub-
routine, these variables are set to two of the values in the source array. Your subrou-
tine should compare these two values and return a value that indicates which of the
elements should come first in the sorted list. You should return –1 if $a comes
before $b, 1 if $b comes before $a, and 0 if they are the same. The other thing to
notice is the <=> operator which takes two values and returns –1, 0, or 1, depend-
ing on which value is numerically larger. This function, therefore, compares the two
values and returns the values required by sort. If you wanted to sort the list in

1 Rather than lexically, where 100 comes before 2.

Sorting 41
descending numerical order, you would simply have to reverse the order of the
comparison of $a and $b like so:

sub desc_numerically {
return $b <=> $a;

}

Another way of handling this is to sort the data in ascending order and reverse the
list using Perl’s built-in reverse function like this:

@out = reverse sort numerically @in;

There is also another operator, cmp, which returns the same values but orders the
elements lexically. The original default sort is therefore equivalent to:

@out = sort lexically @in;

sub lexically {
return $a cmp $b;

}

3.1.2 Complex sorts

Sorts as simple as the ones we’ve discussed so far are generally not written using the
subroutine syntax that we have used above. In these cases, the block syntax is used.
In the block syntax, Perl code is placed between the sort function and the input
list. This code must still work on $a and $b and must obey the same rules about
what it returns. The sorts that we have discussed above can therefore be rewritten
like this:

@out = sort { $a <=> $b } @in;
@out = sort { $b <=> $a } @in; # or @out = reverse sort { $a <=> $b } @in
@out = sort { $a cmp $b } @in;

The subroutine syntax can, however, be used to produce quite complex sort crite-
ria. Imagine that you have an array of hashes where each hash has two keys, fore-
name and surname, and you want to sort the list like a telephone book (i.e.,
surname first and then forename). You could write code like this:

my @out = sort namesort @in;

sub namesort {
return $a->{surname} cmp $b->{surname}

|| $a->{forename} cmp $b->{forename};
}

Note that we make good use of the “short circuit” functionality of the Perl || oper-
ator. Only if the surnames are the same and the first comparison returns 0 is the sec-
ond comparison evaluated.

42 CHAPTER

Useful Perl idioms
We can, of course, mix numeric comparisons with lexical comparisons and even
reverse the order on some comparisons. If our hash also contains a key for age, the
following code will resolve two identical names by putting the older person first.

my @out = sort namesort @in;

sub namesort {
return $a->{surname} cmp $b->{surname}

|| $a->{forename} cmp $b->{forename}
|| $b->{age} <=> $a->{age};

}

This default sort mechanism is implemented using a Quicksort algorithm. In this
type of sort, each element of the list is compared with at least one other element in
order to determine the correct sequence. This is an efficient method if each com-
parison is relatively cheap; however, there are circumstances where you are sorting
on a value which is calculated from the element. In these situations, recalculating
the value each time can have a detrimental effect on performance. There are a
number of methods available to minimize this effect and we will now discuss some
of the best ones.

3.1.3 The Orcish Manoeuvre

One simple way to minimize the effect of calculating the sort value multiple times is
to cache the results of each calculation so that we only have to carry out each calcu-
lation once. This is the basis of the Orcish Manoeuvre (a pun on “or cache”) devised
by Joseph Hall. In this method, the results of previous calculations are stored in a
hash. The basic code would look like this:

my %key_cache;

my @out = sort orcish @in;

sub orcish {

return ($key_cache{$a} ||= get_sort_key($a))
<=> ($key_cache{$b} ||= get_sort_key($b));

}

sub get_sort_key {

Code that takes the list element and returns
the part that you want to sort on

}

There is a lot going on here so it’s worth looking at it in some detail.
The hash %key_cache is used to store the precalculated sort keys.
The function orcish carries out the sort, but for each element, before calculat-

ing the sort key, it checks to see if the key has already been calculated, in which case

Sorting 43
it will be stored in %key_cache. It makes use of Perl’s ||= operator to make the
code more streamlined. The code

$key_cache{$a} ||= get_sort_key($a)

can be expanded to

$key_cache{$a} = $key_cache{$a} || get_sort_key($a)

The net effect of this code is that if $key_cache{$a} doesn’t already exist then
get_sort_key is called to calculate it and the result is stored in $key_cache{$a}.
The same procedure is carried out for $b and the two results are then compared
using <=> (this could just as easily be cmp if you need a lexical comparison).

Depending on how expensive your get_sort_key function is, this method can
greatly increase your performance in sorting large lists.

3.1.4 Schwartzian transform

Another way of avoiding recalculating the sort keys a number of times is to use the
Schwartzian transform. This was named after Randal L. Schwartz, a well-known mem-
ber of the Perl community and author of a number of Perl books, who was the first per-
son to post a message using this technique to the comp.lang.perl.misc newsgroup.

In the Schwartzian transform we precalculate all of the sort keys before we begin
the actual sort.

As an example, let’s go back to our list of CDs. If you remember, we finally
decided that we would read the data file into an array of hashes, where each hash
contained the details of each CD. Figure 3.1 is a slightly simplified diagram of the
@CDs array (each hash has only two fields).

Suppose that now we want to produce a list of CDs arranged in order of release
date. The naïve way to write this using sort would be like this:

my @CDs_sorted_by_year = sort { $a->{year} <=> $b->{year} } @CDs;

We could then iterate across the sorted array and print out whatever fields of the
hash were of interest to us.

0 hashref
hashref1

year 1972

title Ziggy Stardust

year 1971

title Hunky Dory Figure 3.1

The unsorted array of CD hashes

44 CHAPTER

Useful Perl idioms
As you can see, to get to the sort key (the release date) we have to go through a
hash reference to get to that hash itself. Hash lookup is a reasonably expensive oper-
ation in Perl and we’d be better off if we could avoid having to look up each ele-
ment a number of times.

Let’s introduce an intermediate array. Each element of the array will be a refer-
ence to a two-element array. The first element will be the year and the second ele-
ment will be a reference to the original hash. We can create this list very easily
using map.

my @CD_and_year = map { [$_->{year}, $_] } @CDs;

Figure 3.2 shows what this new array would look like.

The year field in each hash has been extracted only once, which will save us a lot of
time. We can now sort our new array on the first element of the array. Array lookup is
much faster than hash lookup. The code to carry out this sort looks like this:

my @sorted_CD_and_year = sort { $a->[0] <=> $b->[0] } @CD_and_year;

Figure 3.3 shows this new array.

0 arrayref
arrayref1

0 1971

1 hashref

year 1972

title Ziggy Stardust

year 1971

title Hunky Dory

0 1972

1 hashref

Figure 3.2 @CD_and_year contains references to a two element array

0 arrayref
arrayref1

0 1972

1 hashref

year 1971

title Hunky Dory

year 1972

title Ziggy Stardust

0 1971

1 hashref

Figure 3.3 @sorted_CD_and_year is @CD_and_year sorted by the first

element of the array

Sorting 45
Now in @sorted_CD_and_year we have an array of references to arrays. The
important thing, however, is that the array is ordered by year. In fact, we only need
the second element of each of these arrays, because that is a reference to our origi-
nal hash. Using map it is simple to strip out the parts that we need.

my @CDs_sorted_by_year = map { $_->[1] } @sorted_CD_and_year;

Figure 3.4 shows what this array would look like.

Let’s put those three stages together.

my @CD_and_year = map { [$_, $_->{year}] } @CDs;
my @sorted_CD_and_year = sort { $a->[1] <=> $b->[1] } @CD_and_year;
my @CDs_sorted_by_year = map { $_->[0] } @sorted_CD_and_year;

That, in a nutshell, is the Schwartzian transform—a sort surrounded by two maps.
There is one more piece of tidying up that we can do. As each of the maps and the
sort take an array as input and return an array we can chain all of these transforma-
tions together in one statement and lose both of the intermediate arrays.

my @CDs_sorted_by_year = map { $_->[0] }
sort { $a->[1] <=> $b->[1] }
map { [$_, $_->{year}] } @CDs;

If this doesn’t look quite like what we had before, try tracing it through in reverse.
Our original array (@CDs) is passed in at the bottom. It goes through the map that
dereferences the hash, then the sort, and finally the last map.

The chaining together of multiple list processing functions, where the output of
the first map becomes the input to the sort and so on, is very similar to the I/O
pipes that we saw when looking at the UNIX filter model earlier.

The Schwartzian transform can be used anywhere that you want to sort a list of
data structures by one of the data values contained within it, but that’s not all it can
do. Here’s a three-line script that prints out our CD file (read in through STDIN),
sorted by the recording label.

print map { $_->[0] }
sort { $a->[1] cmp $b->[1] }
map { [$_, (split /\t/)[2]] } <STDIN>;

0 hashref
hashref1

year 1971

title Hunky Dory

year 1972

title Ziggy Stardust

Figure 3.4

@CDs_sorted_by_year contains

just the hash references from

@sorted_CD_and_year

46 CHAPTER

Useful Perl idioms
3.1.5 The Guttman-Rosler transform

At the 1999 Perl Conference, Uri Guttman and Larry Rosler presented a paper on
sorting with Perl. It covered all of the techniques discussed so far and went a step
further, by introducing the concept of the packed-default sort. They started from
two premises:

1 Eliminating any hash or array dereferencing would speed up the sort.
2 The default lexical sort (without any sort subroutine or block) is the fastest.

The resulting method is an interesting variation on the Schwartzian transform.
Instead of transforming each element of the list into a two element list (the sort
key and the original data) and sorting on the first element of this list, Guttman and
Rosler suggest converting each element of the original list into a string with the
sort key at the beginning and the original element at the end. A list containing
these strings can then be sorted lexically and the original data is extracted from the
sorted list.

The example that they use in their paper is that of sorting IP addresses. First they
convert each element to a string in which each part of the IP address is converted
(using pack) to the character represented by that value in ASCII. This four-character
string has the original data appended to the end:

my @strings = map { pack('C4', /(\d+)\.(\d+)\.(\d+)\.(\d+)/) . $_ } @IPs;

then the strings are lexically sorted using the default sort mechanism

my @sorted_strings = sort @strings

and finally the original data is extracted.

my @sorted @IPs = map { substr($_, 4) } @sorted_strings;

Rewriting this to make it look more like the Schwartzian transform, we get this:

my @sorted_IPs = map { substr($_, 4) }
sort
map { pack('C4', /(\d+)\.(\d+)\.(\d+)\.(\d+)/) . $_ } @IPs;

This type of sort needs a bit more thought than the other methods that we have
considered in order to create a suitable string for sorting; however, it can pay great
dividends in the amount of performance improvement that you can see.

3.1.6 Choosing a sort technique

If you are having performance problems with a program that contains a complex
sort, then it is quite possible that using one of the techniques from this section will
speed up the script. It is, however, possible that your script could get slower. Each of

Database Interface (DBI) 47
the techniques will improve the actual sort time, but they all have an overhead which
means that your sort will need to be quite large before you see any improvement.

When selecting a sort technique to use, it is important that you use the bench-
marking methods, discussed in section 3.4, to work out which technique is most
appropriate. Of course, if your script is only going to run once, then spending half a
day benchmarking sorts for the purpose of shaving five seconds off the runtime isn’t
much of a gain.

This section has only really started to discuss the subject of sorting in Perl. If
you’d like to know more, Guttman and Rosler’s paper is a very good place to start.
You can find it online at http://www.hpl.hp.com/personal/Larry_Rosler/sort/.

3.2 Database Interface (DBI)

As discussed in chapter 1, a common source or sink for data is a database. For
many years Perl has had mechanisms that enable it to talk to various database sys-
tems. For example, if you wanted to exchange data with an Oracle database you
would use oraperl and if you had to communicate with a Sybase database you
would use sybperl. Modules were also available to talk to many other popular
database systems.

Most of these database access modules were a thin Perl wrapper around the pro-
gramming APIs that were already provided by the database vendors. The mecha-
nisms for talking to the various databases were all doing largely the same thing, but
they were doing it in completely incompatible ways.

This has all changed in recent years with the introduction of the generic Perl
Database Interface (DBI) module. This module was designed and written by Tim
Bunce (the author and maintainer of oraperl). It allows a program to connect to
any of the supported database systems and read and write data using exactly the same
syntax. The only change required to connect to a different database system is to
change one string that is passed to the DBI connect function. It does this by using
different database driver (DBD) modules. These are all named DBD::<db_name>.
You will need to obtain the DBD module for whichever database you are using sepa-
rately from the main DBI module.

3.2.1 Sample DBI program

A sample DBI program to read data from a database would look like this:

1: #!/usr/local/bin/perl –w
2:
3: use strict;
4: use DBI;
5:

48 CHAPTER

Useful Perl idioms
6: my $user = 'dave';
7: my $pass = 'secret';
8: my $dbh = DBI->connect('dbi:mysql:testdb', $user, $pass,
9: {RaiseError => 1})

10: || die "Connect failed: $DBI::errstr";
11:
12: my $sth = $dbh->prepare('select col1, col2, col3 from my_table')
13:
14: $sth->execute;
15:
16: my @row;
17: while (@row = $sth->fetchrow_array) {
18: print join("\t", @row), "\n";
19: }
20:
21: $sth->finish;
22: $dbh->disconnect;

While this is a very simple DBI program, it demonstrates a number of important
DBI concepts and it is worth examining line by line.

Line 1 points to the Perl interpreter. Notice the use of the -w flag.
Line 3 switches on the strict pragma.
Line 4 brings in the DBI.pm module. This allows us to use the DBI functions.
Lines 6 and 7 define a username and password that we will use to connect to the

database. Obviously, in a real program you probably wouldn’t want to have a pass-
word written in a script in plain text.

Line 8 connects us to the database. In this case we are connecting to a database
running MySQL. This free database program is very popular for web systems. This is
the only line that would need to change if we were connecting to a different data-
base system. The connect function takes a number of parameters which can vary
depending on the database to which you are connecting. The first parameter is a
connection string. This changes its precise meaning for different databases, but it is
always a colon-separated string. The first part is the string dbi and the second part is
always the name of the database system2 that we are connecting to. In this case the
string mysql tells DBI that we will be talking to a MySQL database, and it should
therefore load the DBD::mysql module. The third section of the connection string
in this case is the particular database that we want to connect to. Many database sys-
tems (including MySQL) can store many different databases on the same database
server. In this case we want to connect to a database called testdb. The second and
third parameters are valid usernames and passwords for connecting to this database.

2 Or, more accurately, the name of the DBD module that we are using to connect to the database.

Data::Dumper 49
The fourth parameter to DBI->connect is a reference to a hash containing various
configuration options. In this example we switch on the RaiseError option, which
will automatically generate a fatal run-time error if a database error occurs.

The DBI->connect function returns a database handle, which can then be used
to access other DBI functions. If there is an error, the function returns undef. In
the sample program we check for this and, if there is a problem, the program dies
after printing the value of the variable $DBI::errstr which contains the most
recent database error message.

Line 12 prepares an SQL statement for execution against the database. It does
this by calling the DBI function prepare. This function returns a statement handle
which can be used to access another set of DBI functions—those that deal with exe-
cuting queries on the database and reading and writing data. This handle is unde-
fined if there is an error preparing the statement.

Line 14 executes the statement and dies if there is an error.
Line 16 defines an array variable which will hold each row of data returned from

the database in turn.
Lines 17 to 19 define a loop which receives each row from the database query and

prints it out. On line 17 we call fetchrow_array which returns a list containing
one element for each of the columns in the next row of the result set. When the
result set has all been returned, the next call to fetchrow_array will return the
value undef.

Line 18 prints out the current row with a tab character between each element.
Lines 21 and 22 call functions that reclaim the memory used for the database

and statement handles. This memory will be reclaimed automatically when the vari-
ables go out of scope, but it is tidier to clean up yourself.

This has been a very quick overview of using the DBI. There are a number of
other functions and the most useful ones are listed in appendix A. More detailed
documentation comes with the DBI module and your chosen DBD modules.

3.3 Data::Dumper

As your data structures get more and more complex it will become more and more
useful to have an easy way to see what they look like. A very convenient way to do
this is by using the Data::Dumper module which comes as a standard part of the
Perl distribution. Data::Dumper takes one or more variables and produces a
“stringified” version of the data contained in the variables.

We’ll see many examples of Data::Dumper throughout the book but, as an
example, let’s use it to get a dump of the CD data structure that we built in the pre-
vious chapter. The data structure was built up using code like this:

50 CHAPTER

Useful Perl idioms
my @CDs;
my @attrs = qw(artist title label year);

while (<STDIN>) {
chomp;
my %rec;
@rec{@attrs} = split /\t/;
push @CDs, \%rec;

}

In order to use Data::Dumper we just need to add a use Data::Dumper statement
and a call to the Dumper function like this:

use Data::Dumper;
my @CDs;

my @attrs = qw(artist title label year);
while (<STDIN>) {

chomp;
my %rec;
@rec{@attrs} = split /\t/;
push @CDs, \%rec;

}

print Dumper(\@CDs);

Running this program using our CD files as input produces the following output:

$VAR1 = [
{
'artist' => 'Bragg, Billy',
'title' => 'Workers\' Playtime',
'year' => '1987',
'label' => 'Cooking Vinyl'

},
{

'artist' => 'Bragg, Billy',
'title' => 'Mermaid Avenue',
'year' => '1998',
'label' => 'EMI'

},
{

'artist' => 'Black, Mary',
'title' => 'The Holy Ground',
'year' => '1993',
'label' => 'Grapevine'

},
{

'artist' => 'Black, Mary',
'title' => 'Circus',
'year' => '1996',
'label' => 'Grapevine'

},

Benchmarking 51
{
'artist' => 'Bowie, David',
'title' => 'Hunky Dory',
'year' => '1971',
'label' => 'RCA'

},
{

'artist' => 'Bowie, David',
'title' => 'Earthling',
'year' => '1998',
'label' => 'EMI'

}
];

This is a very understandable representation of our data structure.
Notice that we passed a reference to our array rather than the array itself. This is

because Dumper expects a list of variables as arguments so, if we had passed an array, it
would have processed each element of the array individually and produced output for
each of them. By passing a reference we forced it to treat our array as a single object.

3.4 Benchmarking

When choosing between various ways to implement a task in Perl, it will often be
useful to know which option is the quickest. Perl provides a module called Bench-
mark that makes it easy to get this data. This module contains a number of func-
tions (see the documentation for details) but the most useful for comparing the
performance of different pieces of code is called timethese. This function takes a
number of pieces of code, runs them each a number of times, and returns the time
that each piece of code took to run. You should, therefore, break your options
down into separate functions which all do the same thing in different ways and pass
these functions to timethese. For example, there are four ways to put the value of
a variable into the middle of a fixed string. You can interpolate the variable directly
within the string

$str = "The value is $x (or thereabouts)";

or join a list of values

$str = join '', 'The value is ', $x, ' (or thereabouts)';

or concatenate the values

$s = 'The value is ' . $x . ' (or thereabouts)';

or, finally, use sprintf.

52 CHAPTER

Useful Perl idioms
$str = sprintf 'The value is %s (or thereabouts)', $x;

In order to calculate which of these methods is the fastest, you would write a script
like this:

#!/usr/bin/perl -w
use strict;
use Benchmark qw(timethese);

my $x = 'x' x 100;

sub using_concat {
my $str = 'x is ' . $x . ' (or thereabouts)';

}

sub using_join {
my $str = join '', 'x is ', $x, ' (or thereabouts)';

}

sub using_interp {
my $str = "x is $x (or thereabouts)";

}

sub using_sprintf {
my $str = sprintf("x is %s (or thereabouts)", $x);

}

timethese (1E6, {
'concat' => \&using_concat,
'join' => \&using_join,
'interp' => \&using_interp,
'sprintf' => \&using_sprintf,

});

On my current computer,3 running this script gives the following output:

Benchmark: timing 1000000 iterations of concat, interp, join, sprintf …
concat: 8 wallclock secs (7.36 usr + 0.00 sys = 7.36 CPU) @ 135869.57/s (n=1000000)
interp: 8 wallclock secs (6.92 usr + -0.00 sys = 6.92 CPU) @ 144508.67/s (n=1000000)
join: 9 wallclock secs (8.38 usr + 0.03 sys = 8.41 CPU) @ 118906.06/s (n=1000000)

sprintf: 12 wallclock secs (11.14 usr + 0.02 sys = 11.16 CPU) @ 89605.73/s
(n=1000000)

What does this mean? Looking at the script, we can see that we call the function
timethese, passing it an integer followed by a reference to a hash. The integer is the
number of times that you want the tests to be run. The hash contains details of the
code that you want tested. The keys to the hash are unique names for each of the
subroutines and the values are references to the functions themselves. timethese
will run each of your functions the given number of times and will print out the

3 A rather old 200 MHz P6 with 64 MB of RAM, running Microsoft Windows 98 and ActivePerl build 521.

Command line scripts 53
results. As you can see from the results we get above, our functions fall into three
sets. Both concat and interp took about 8 seconds of CPU time to run 1,000,000
times; join was a little longer at 9 seconds; and sprintf came in at 12 seconds of
CPU time.

You can then use these figures to help you decide which version of the code to
use in your application.

3.5 Command line scripts

Often data munging scripts are written to carry out one-off tasks. Perhaps you have
been given a data file which you need to clean up before loading it into a database.
While you can, of course, write a complete Perl script to carry out this munging,
Perl supplies a set of command line options which make it easy to carry out this
kind of task from the command line. This approach can often be more efficient.

The basic option for command line processing is -e. The text following this
option is treated as Perl code and is passed through to the Perl interpreter. You can
therefore write scripts like:

perl -e 'print "Hello world\n"'

You can pass as many -e options as you want to Perl and they will be run in the
order that they appear on the command line. You can also combine many state-
ments in one -e string by separating them with a semicolon.

If the code that you want to run needs a module that you would usually include
with a use statement, you can use the -M option to load the module. For example,
this makes it easy to find the version of any module that is installed on your system4

using code like this:

perl -MCGI -e 'print $CGI::VERSION'

These single-line scripts can sometimes be useful, but there is a whole set of more
powerful options to write file processing scripts. The first of these is -n, which adds
a loop around your code which looks like this:

LINE:
while (<>) {

Your -e code goes here
}

This can be used, for example, to write a simple grep-like script such as:

perl -ne 'print if /search text/' file.txt

4 Providing that the module uses the standard practice of defining a $VERSION variable.

54 CHAPTER

Useful Perl idioms
which will print any lines in file.txt that contain the string “search text”. Notice
the presence of the LINE label which allows you to write code using next LINE.

If you are transforming data in the file and want to print a result for every line,
then you should use the -p option which prints the contents of $_ at the end of
each iteration of the while loop. The code it generates looks like this:

LINE:
while (<>) {

Your -e code goes here
} continue {

print
}

As an example of using this option, imagine that you wanted to collapse multiple
zeroes in a record to just one. You could write code like this:

perl -pe 's/0+/0/g' input.txt > output.txt

With the examples we’ve seen so far, the output from the script is written to STDOUT
(that is why we redirected STDOUT to another file in the last example). There is
another option, -i, which allows us to process a file in place and optionally create a
backup containing the previous version of the file. The -i takes a text string which
will be the extension added to the backup of the file, so we can rewrite our previous
example as:

perl -i.bak -pe 's/0+/0/g' input.txt

This option will leave the changed data in input.txt and the original data in
input.txt.bak. If you don’t give -i an extension then no backup is made (so
you’d better be pretty confident that you know what you’re doing!).

There are a number of other options that can make your life even easier. Using
-a turns on autosplit, which in turn splits each input row into @F. By default,
autosplit splits the string on any white space, but you can change the split character
using -F. Therefore, in order to print out the set of user names from /etc/passwd
you can use code like this:

perl -a -F':' -ne 'print "$F[0]\n"' < /etc/passwd

The –l option switches on line-end processing. This automatically does a chomp on
each line when used with -n or -p. You can also give it an optional octal number
which will change the value of the output record separator ($\).5 This value is

5 Special variables like $\ are covered in more detail in chapter 6.

Further information 55
appended to the end of each output line. Without the octal number, $\ is set to the
same value as the input record separator ($/). The default value for this is a newline.
You can change the value of $/ using the -0 (that’s dash-zero, not dash-oh) option.

What this means is that in order to have newlines automatically removed from
your input lines and automatically added back to your output line, just use –l. For
instance, the previous /etc/passwd example could be rewritten as:

perl -a -F':' -nle 'print $F[0]' < /etc/passwd

For more information about these command line options see the perlrun manual
page which is installed when you install Perl.

3.6 Further information

More discussion of the Schwartzian transform, the Orcish Manoeuvre, and other
Perl tricks can be found in Effective Perl Programming by Joseph Hall with Randal
Schwartz (Addison-Wesley) and The Perl Cookbook by Tom Christiansen and
Nathan Torkington (O’Reilly).

The more academic side of sorting in Perl is discussed in Mastering Algorithms
with Perl by Jon Orwant, Jarkko Hietaniemi, and John Macdonald (O’Reilly).

More information about benchmarking can be found in the documentation for
the Benchmark.pm module.

Further information about the DBI and DBD modules can be found in Program-
ming the Perl DBI by Tim Bunce and Alligator Descartes (O’Reilly) and in the
documentation that is installed along with the modules. When you have installed
the DBI module you can read the documentation by typing

perldoc DBI

at your command line. Similarly you can read the documentation for any installed
DBD module by typing

perldoc DBD::<name>

at your command line. You should replace <name> with the name of the DBD mod-
ule that you have installed, for example “Sybase” or “mysql”.

56 CHAPTER

Useful Perl idioms
3.7 Summary

■ Sorting can be very simple in Perl, but for more complex sorts there are a
number of methods which can make the sort more efficient.

■ Database access in Perl is very easy using the DBI.
■ Data::Dumper is very useful for seeing what your internal data structures

look like.
■ Benchmarking is very important, but can be quite tricky to do correctly.
■ Command line scripts can be surprisingly powerful.

4Pattern matching
What this chapter covers:
■ String handling functions
■ Functions for case transformation
■ Regular expressions—what they are and how

to use them
■ Taking regular expressions to extremes
57

58 CHAPTER

Pattern matching
A lot of data munging involves the use of pattern matching. In fact, it’s probably
fair to say that the vast majority of data munging uses pattern matching in one way
or another. Most pattern matching in Perl is carried out using regular expressions.1

It is therefore very important that you understand how to use them. In this chapter
we take an overview of regular expressions in Perl and how they can be used in data
munging, but we start with a brief look at a couple of methods for pattern matching
that don’t involve regular expressions.

4.1 String handling functions

Perl has a number of functions for handling strings and these are often far simpler
to use and more efficient than the regular expression-based methods that we will
discuss later. When considering how to solve a particular problem, it is always worth
seeing if you can use a simpler method before going straight for a solution using
regular expressions.

4.1.1 Substrings

If you want to extract a particular portion of a string then you can use the substr
function. This function takes two mandatory parameters: a string to work on and
the offset to start at, and two optional parameters: the length of the required
substring and another string to replace it with. If the third parameter is omitted,
then the substring will include all characters in the source string from the given off-
set to the end. The offset of the first character in the source string is 0.2 If the offset
is negative then it counts from the end of the string. Here are a few simple examples:

my $string = 'Alas poor Yorick. I knew him Horatio.';
my $sub1 = substr($string, 0, 4); # $sub1 contains 'Alas'
my $sub2 = substr($string, 10, 6); # $sub2 contains 'Yorick'
my $sub3 = substr($string, 29); # $sub3 contains 'Horatio.'
my $sub4 = substr($string, -12, 3); # $sub4 contains 'him'

Many programming languages have a function that produces substrings in a similar
manner, but the clever thing about Perl’s substr function is that the result of the
operation can act as an lvalue. That is, you can assign values to it, like this:

my $string = 'Alas poor Yorick. I knew him Horatio.';

substr($string, 10, 6) = 'Robert';
substr($string, 29) = 'as Bob';

print $string;

1 In fact, it’s often suggested that regular expressions in Perl are overused.
2 Or, more accurately, it is the value of the special $[variable, but as that is initially set to zero and there is

really no good reason to change it, your strings should always start from position zero.

String handling functions 59
which will produce the output:

Alas poor Robert. I knew him as Bob

Notice the second assignment in this example which demonstrates that the sub-
string and the text that you are replacing it with do not have to be the same length.
Perl will take care of any necessary manipulation of the strings. You can even do
something like this:

my $short = 'Short string';
my $long = 'Very, very, very, very long';

substr($short, 0, 5) = $long;

which will leave $short containing the text “Very, very, very, very long string”.

4.1.2 Finding strings within strings (index and rindex)

Two more functions that are useful for this kind of text manipulation are index and
rindex. These functions do very similar things—index finds the first occurrence of
a string in another string and rindex finds the last occurrence. Both functions
return an integer indicating the position3 in the source string where the given sub-
string begins, and both take an optional third parameter which is the position where
the search should start. Here are some simple examples:

my $string = 'To be or not to be.';

my $pos1 = index($string, 'be'); # $pos1 is 3
my $pos2 = rindex($string, 'be'); # $pos2 is 16
my $pos3 = index($string, 'be', 5); # $pos3 is 16
my $pos4 = index($string, 'not'); # $pos4 is 9
my $pos5 = rindex($string, 'not'); # $pos5 is 9

It’s worth noting that $pos3 is 16 because we don’t start looking until position 5;
and $pos4 and $pos5 are equal because there is only one instance of the string
'not' in our source string.

It is, of course, possible to use these three functions in combination to carry out
more complex tasks. For example, if you had a string and wanted to extract the
middle portion that was contained between square brackets ([and]), you could do
something like this:

my $string = 'Text with an [important bit] in brackets';

my $start = index($string, '[');
my $end = rindex($string, ']');

my $keep = substr($string, $start+1, $end-$start-1);

3 Again, the positions start from 0—or the value of $[.

60 CHAPTER

Pattern matching
although in this case, the regular expression solution would probably be more eas-
ily understood.

4.1.3 Case transformations

Another common requirement is to alter the case of a text string, either to change
the string to all upper case, all lower case, or some combination. Perl has functions
to handle all of these eventualities. The functions are uc (to convert a whole string
to upper case), ucfirst (to convert the first character of a string to upper case), lc
(to convert a whole string to lower case), and lcfirst (to convert the first charac-
ter of a string to lower case).

There are a couple of traps that seem to catch unwary programmers who use
these functions. The first of these is with the ucfirst and lcfirst functions. It is
important to note that they do exactly what they say and affect only the first charac-
ter in the given string. I have seen code like this:

$string = ucfirst 'UPPER'; # This doesn’t work

where the programmer expects to end up with the string 'Upper'. The correct
code to achieve this is:

$string = ucfirst lc 'UPPER';

The second trap for the unwary is that these functions will respect your local lan-
guage character set, but to make use of that, you need to switch on Perl’s locale
support by including the line use locale in your program.

4.2 Regular expressions

In this section we take a closer look at regular expressions. This is one of Perl’s most
powerful tools for data munging, but it is also a feature that many people have diffi-
culty understanding.

4.2.1 What are regular expressions?

“Regular expression” is a very formal computer science sounding term for some-
thing that would probably scare people a great deal less if we simply called it “pat-
tern matching,” because that is basically what we are talking about.

If you have some data and you want to know whether or not certain strings are
present within the data set, then you need to construct a regular expression that
describes the data that you are looking for and see whether it matches your data.
Exactly how you construct the regular expression and match it against your data

Regular expressions 61
will be covered later in the chapter. First we will look at the kinds of things that you
can match with regular expressions.

Many text-processing tools support regular expressions. UNIX tools like vi, sed,
grep, and awk all support them to varying degrees. Even some Windows-based tools
like Microsoft Word allow you to search text using basic kinds of regular expressions.
Of all of these tools, Perl has the most powerful regular expression support.

Among others, Perl regular expressions can match the following:
■ A text phrase
■ Phrases containing optional sections
■ Phrases containing repeated sections
■ Alternate phrases (i.e., either this or that)
■ Phrases that must appear at the start or end of a word
■ Phrases that must appear at the start or end of a line
■ Phrases that must appear at the start or end of the data
■ Any character from a group of characters
■ Any character not from a group of characters

Recent versions of Perl have added a number of extensions to the standard regu-
lar expression set, some of which are still experimental at the time of this writing.
For the definitive, up-to-date regular expression documentation for your version of
Perl see the perlre documentation page.

4.2.2 Regular expression syntax

In Perl you can turn a string of characters into a regular expression by enclosing it
in slash characters (/). So, for example

/regular expression/

is a regular expression which matches the string “regular expression”.

Regular expression metacharacters
Within a regular expression most characters will match themselves4 unless their
meaning is modified by the presence of various metacharacters. The list of meta-
characters that can be used in Perl regular expressions is

\ | () [{ ^ $ * + ? .

4 That is, a letter “a” in a regular expression will match the character “a” in the target string.

62 CHAPTER

Pattern matching
Any of these metacharacters can be used to match itself in a regular expression by
preceding it with a backslash character (\). You’ll see that the backslash is itself a
metacharacter, so to match a literal backslash you’ll need to have two backslashes in
your regular expression /foo\\bar/ matches “foo\bar”.

The dot character (.) matches any character.
The normal escape sequences that are familiar from many programming lan-

guages are also available. A tab character is matched by \t, a newline by \n, a car-
riage return by \r, and a form feed by \f.

Character classes
You can match any character in a group of characters (known in Perl as a character
class) by enclosing the list of characters within square brackets ([and]). If a group
of characters are consecutive in your character set, then you can use a dash character
(-) to denote a range of characters. Therefore the regular expression

/[aeiouAEIOU]/

will match any vowel and

/[a-z]/

will match any lower case letter.
To match any character that is not in a character class, put a caret (^) at the start

of the group, so

/[^aeiouAEIOU]/

matches any nonvowel (note that this does not just match consonants; it will also
match punctuation characters, spaces, control characters—and even extended ASCII
characters like ñ, «, and é).

Escape sequences
There are a number of predefined character classes that can be denoted using escape
sequences. Any digit is matched by \d. Any word character (i.e., digits, upper and
lower case letters, and the underscore character) is matched by \w and any white
space character (space, tab, carriage return, line feed, or form feed) is matched by
\s. The inverses of these classes are also defined. Any nondigit is matched by \D, any
nonword character is matched by \W , and any nonspace character is matched by \S.

Matching alternatives
The vertical bar character (|) is used to denote alternate matches. A regular expres-
sion, such as:

/regular expression|regex/

Regular expressions 63
will match either the string “regular expression” or the string “regex”. Parentheses
((and)) can be used to group strings, so while

/regexes are cool|rubbish/

will match the strings “regexes are cool” or “rubbish”,

/regexes are (cool|rubbish)/

will match “regexes are cool” or “regexes are rubbish”.

Capturing parts of matches
A side effect of grouping characters using parentheses is that if a string matches a
regular expression, then the parts of the string which match the sections in paren-
theses will be stored in special variables called $1, $2, $3, etc. For example, after
matching a string against the previous regular expression, then $1 will contain the
string “cool” or “rubbish.” We will see more examples of this later in the chapter.

Quantifying matches
You can also quantify the number of times that a string should appear using the +,
*, or ? characters. Putting + after a character (or string of characters in a parentheses
or a character class) allows that item to appear one or more times, * allows the item
to appear zero or more times, and ? allows the item to appear zero or one time (i.e.,
it becomes optional). For example:

/so+n/

will match “son”, “soon”, or “sooon”, etc., whereas

/so*n/

will match “sn”, “son”, “soon”, and “sooon”, etc., and

/so?n/

will only match “sn”, and “son”.
Similarly for groups of characters,

/(so)+n/

will match “son”, “soson”, or “sososon”, etc., whereas

/(so)*n/

will match “n”, “son”, “soson”, and “sososon”, etc., and

/(so)?n/

will match only “n” and “son”.

64 CHAPTER

Pattern matching
You can have more control over the number of times that a term appears using the
{n,m} syntax. In this syntax the term to be repeated is followed by braces containing
up to two numbers separated by a comma. The numbers indicate the minimum and
maximum times that the term can appear. For example, in the regular expression

/so{1,2}n/

the “o” will match if it appears once or twice, so “son” or “soon” will match, but
“sooon” will not. If the first number is omitted, then it is assumed to be zero and if
the second number is omitted then there is assumed to be no limit to the number of
occurrences that will match. You should notice that the +, *, and ? forms that we
used earlier are not strictly necessary as they could be indicated using {1,}, {0,},
and {0,1}. If only one number appears without a comma then the expression will
match if the term appears exactly that number of times.

Anchoring matches
It is also possible to anchor parts of your regular expression at various points of the
data. If you want to match a regular expression only at the start of your data you can
use a caret (^). Similarly, a dollar sign ($) matches at the end of the data. To match
an email header line which consists of a string such as “From”, “To”, or “Subject”
followed by a colon, an optional space and some more text, you could use a regular
expression like this:5

/^[^:]+: ?.+$/

which matches the start of the line followed by at least one noncolon character, fol-
lowed by a colon, an optional space, and at least one other character before the end
of the line.

Other special terms can be used to match at word boundaries. The term \b
matches only at the start or end of a word (i.e., between a \w character and a \W
character) and its inverse \B only matches within a word (i.e., between two \w charac-
ters). For instance, if we wanted to match “son”, but didn’t want to match it at the
end of names like “Johnson” and “Robertson” we could use a regular expression like:

/\bson\b/

and if we were only interested in occurrences of “son” at the end of other words,
we could use:

/\Bson\b/

5 You could also write this as /^.+?: ?.+$/, but we don’t cover the syntax for nongreedy matching until
later in the chapter.

Regular expressions 65
More complex regular expressions
Recent versions of Perl have added more complexity to regular expressions allowing
you to define more complex rules against which you match your strings. The full
explanation of these enhancements is in your Perl documentation, but the most
important additions are:

■ (?: …)—These parentheses group in the same way that normal brackets do,
but when they match, their contents don’t get assigned to $1, $2, etc.

■ (?= …)—This is known as positive lookahead. It enables you to check that
whatever is between the parentheses exists there in the string, but it doesn’t
actually consume the next part of the string that is being matched.

■ (?! …)—This is negative lookahead, which is the opposite of positive looka-
head. You will only get a match if whatever is in the parentheses does not
match the string there.

4.2.3 Using regular expressions

Most regular expressions are used in Perl programs in one of two ways. The simpler
way is to check if a data string matches the regular expression, and the slightly more
complex way is to replace parts of data strings with other strings.

String matching
To match a string against a regular expression in Perl we use the match operator—
which is normally called m//, although it is quite possible that it looks nothing like
that when you use it.

By default, the match operator works on the $_ variable. This works very well
when you are looping through an array of values. Imagine, for example, that you
have a text file containing email messages and you want to print out all of the lines
containing “From” headers. You could do something like this:

open MAIL, 'mail.txt' or die "Can’t open mail.txt: $!";

while (<MAIL>) {
print if m/^From:/;

}

The while loop reads in another line from the file each time around and stores the
line in $_. The match operator checks for lines beginning with the string “From:”
(note the ^ character that matches the start of the line) and returns true for lines
that match. These lines are then printed to STDOUT.

One nice touch with the match operator is that in many cases the m is optional so
we can write the match statement in our scripts as

print if /^From:/;

66 CHAPTER

Pattern matching
and that is how you will see it in most scripts that you encounter. It is also possible
to use delimiters other than the / character, but in this case the m becomes manda-
tory. To see why you might want to do this, look at this example:

open FILES 'files.txt' or die "Can't open files.txt: $!";

while (<FILES>) {
print if /\/davec\//;

}

In this script we are doing a very similar thing to the previous example, but in this
case we are scanning a list of files and printing the ones that are under a directory
called davec. The directory separator character is also a slash, so we need to escape
it within the regular expression with back-slashes and the whole thing ends up look-
ing a little inelegant (this is sometimes known as leaning toothpick syndrome). To
get around this, Perl allows us to choose our own regular expression delimiter. This
can be any punctuation character, but if we choose one of the paired delimiter char-
acters ((, {, [or <) to open our regular expression we must use the opposite charac-
ter (), },] or >) to close it, otherwise we just use the same character. We can
therefore rewrite our match line as

print if m(/davec/);

or

print if m|/davec/|;

or even

print if m=/davec/=;

any of which may well be easier to read than the original. Note that in all of these
cases we have to use the m at the start of the expression.

More capturing
Once a match has been successful, Perl sets a number of special variables. For each
bracketed group in your regular expression, Perl sets a variable. The first bracket
group goes into $1, the second into $2, and so on. Bracketed groups can be nested,
so the order of assignment to these variables depends upon the order of the open-
ing bracket of the group. Going back to our earlier email header example, if we had
an email in a text file and wanted to print out all of the headers, we could do some-
thing like this:6

6 This simplified example conveniently ignores the fact that email headers can continue onto more than one
line and that an email body can contain the character “:”.

Regular expressions 67
open MAIL, 'mail.txt' or die "Can't open mail.txt: $!";

while (<MAIL>) {
if (/^([^:]+): ?(.+)$/) {

print "Header $1 has the value $2\n";
}

We have added two sets of brackets to the original regular expression which will cap-
ture the header name and value into $1 and $2 so that we can print them out in the
next line. If a match operation is evaluated in an array context, it returns the values
of $1, $2, and so forth in a list. We could, therefore, rewrite the previous example as:

open MAIL, 'mail.txt' or die "Can't open mail.txt: $!";

my ($header, $value);
while (<MAIL>) {

if (($header, $value) = /^([^:]+): ?(.+)$/) {
print "Header $header has the value $value\n";

}
}

There are other variables that Perl sets on a successful match. These include $&
which is set to the part of the string that matched the whole regular expression, $‘
which is set to the part of the string before the part that matched the regular
expression, and $’ which is set to the part of the string after the part that matched
the regular expressions. Therefore after executing the following code:

$_ = 'Matching regular expressions';
m/regular expression/;

$& will contain the string “regular expression”, $‘ will contain “Matching ”, and $’
will contain “s”. Obviously these variables are far more useful if your regular expres-
sion is not a fixed string.

There is one small downside to using these variables. Perl has to do a lot more
work to keep them up to date. If you don’t use them it doesn’t set them. However,
if you use them in just one match in your program, Perl will then keep them
updated for every match. Using them can therefore have an effect on performance.

Matching against other variables
Obviously not every string that you are going to want to match is going to be in $_,
so Perl provides a binding operator which binds the match to another variable. The
operator looks like this:

$string =~ m/regular expression/

68 CHAPTER

Pattern matching
This statement searches for a match for the string “regular expression” within the
text in the variable $string.

Match modifiers
There are a number of optional modifiers that can be applied to the match operator
to change the way that it works. These modifiers are all placed after the closing
delimiter. The most commonly used modifier is i which forces the match to be
case-insensitive, so that

m/hello/i

will match “hello”, “HELLO”, “Hello”, or any other combination of cases. Earlier
we saw a regular expression for matching vowels that looked like this

/[aeiouAEIOU]/

Now that we have the i modifier, we can rewrite this as

/[aeiou]/i

The next two modifiers are s and m which force the match to treat the data string as
either single or multiple lines. In multiple line mode, “.” will match a newline char-
acter (which would not happen by default). Also ^ and $ will match at the start and
end of any line. To match the start and end of the entire string you can use the
anchors \A and \Z.

The final modifier is x. This allows you to put white space and comments within
your regular expressions. The regular expressions that we have looked at so far have
been very simple, but regular expressions are largely what give Perl its reputation of
being written in line noise. If we look again at the regular expression we used to
match email headers, is it easier to follow like this:

m/^[^:]+\s?.+$/

or like this

m/^ # start of line
[^:]+ # at least one non-colon
: # a colon
\s? # an optional white space character
.+ # at least one other character
$/x # end of line

And that’s just a simple example!

Regular expressions 69
String replacement
The string replacement operation looks strikingly similar to the string-matching
operator, and works in a quite similar fashion. The operator is usually called s///
although, like the string-matching operator, it can actually take many forms.

The simplest way of using the string replacement operator is to replace occur-
rences of one string with another string. For example to replace “Dave” with
“David” you would use this code:

s/Dave/David/;

The first expression (Dave) is evaluated as a regular expression. The second expres-
sion is a string that will replace whatever matched the regular expression in the orig-
inal data string. This replacement string can contain any of the variables that get set
on a successful match. It is therefore possible to rewrite the previous example as:

s/(Dav)e/${1}id/

As with the match operator, the operation defaults to affecting whatever is in the vari-
able $_, but you can bind the operation to a different variable using the =~ operator.

Substitution modifiers
All of the match operator modifiers (i, s, m, and x) work in the same way on the
substitution operator but there are a few extra modifiers. By default, the substitu-
tion only takes place on the first string matched in the data string. For example:

my $data = "This is Dave’s data. It is the data belonging to Dave";

$data =~ s/Dave/David/;

will result in $data containing the string “This is David’s data. It is the data
belonging to Dave”. The second occurrence of Dave was untouched. In order to
affect all occurrences of the string we can use the g modifier.

my $data = "This is Dave’s data. It is the data belonging to Dave";

$data =~ s/Dave/David/g;

This works as expected and leaves $data containing the string “This is David’s
data. It is the data belonging to David”.

The other two new modifiers only affect the substitution if either the search
string or the replacement string contains variables or executable code. Consider the
following code:

my ($new, $old) = @ARGV;

while (<STDIN>) {
s/$old/$new/g;

70 CHAPTER

Pattern matching
print;
}

which is a very simple text substitution filter. It takes two strings as arguments. The
first is a string to search for and the second is a string to replace it with. It then
reads whatever is passed to it on STDIN and replaces one string with the other. This
certainly works, but it is not very efficient. Each time around, the loop Perl doesn’t
know that the contents of $old haven’t changed so it is forced to recompile the
regular expression each time. We, however, know that $old has a fixed value. We
can therefore let Perl know this, by adding the o modifier to the substitution opera-
tor. This tells Perl that it is safe to compile the regular expression once and to reuse
the same version each time around the loop. We should change the substitution line
to read

s/$old/$new/go;

There is one more modifier to explain and that is the e modifier. When this modi-
fier is used, the replacement string is treated as executable code and is passed to
eval. The return value from the evaluation is then used as the replacement string.7

As an example, here is a fairly strange way to print out a table of squares:

foreach (1 .. 12) {
s/(\d+)/print "$1 squared is ", $1*$1, "\n"/e;

}

which produces the following output:

1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36
7 squared is 49
8 squared is 64
9 squared is 81
10 squared is 100
11 squared is 121
12 squared is 144

4.2.4 Example: translating from English to American

To finish this overview of regular expressions, let’s write a script that translates from
English to American. To make it easier for ourselves we’ll make a few assumptions.

7 Actually it isn’t quite that simple, as you can have multiple instances of the e modifier and the replacement
string is evaluated for each one.

Regular expressions 71
We’ll assume that each English word has just one American translation.8 We’ll also
store our translations in a text file so it is easy to add to them. The program will
look something like this:

1: #!/usr/bin/perl -w
2: use strict;
3:
4: while (<STDIN>) {
5:
6: s/(\w+)/translate($1)/ge;
7: print;
8: }
9:

10: my %trans;
11: sub translate {
12: my $word = shift;
13:
14: $trans{lc $word} ||= get_trans(lc $word);
15: }
16:
17: sub get_trans {
18: my $word = shift;
19:
20: my $file = 'american.txt';
21: open(TRANS, $file) || die "Can't open $file: $!";
22:
23: my ($line, $english, $american);
24: while (defined($line = <TRANS>)) {
25: chomp $line;
26: ($english, $american) = split(/\t/, $line);
27: do {$word = $american; last; } if $english eq $word;
28: }
29: close TRANS;
30: return $word;
31: }

How the translation program works
Lines 1 and 2 are the standard way to start a Perl script.

The loop starting on line 4 reads from STDIN and puts each line in turn in the
$_ variable.

Line 6 does most of the work. It looks for groups of word characters. Each time
it finds one it stores the word in $1. The replacement string is the result of execut-
ing the code translate($1). Notice the two modifiers: g which means that every

8 We’ll also conveniently ignore situations where an English phrase should be replaced by a different phrase
in American, such as “car park” and “parking lot.”

72 CHAPTER

Pattern matching
word in the line will be converted, and e which forces Perl to execute the replace-
ment string before putting it back into the original string.

Line 7 prints the value of $_, which is now the translated line. Note that when
given no arguments, print defaults to printing the contents of the $_ variable—
which in this case is exactly what we want.

Line 10 defines a caching hash which the translate function uses to store
words which it already knows how to translate.

The translate function which starts on line 11 uses a caching algorithm similar
to the Orcish Manoeuvre. If the current word doesn’t exist in the %trans hash, it
calls get_trans to get a translation of the word. Notice that we always work with
lower case versions of the word.

Line 17 starts the get_trans function, which will read any necessary words
from the file containing a list of translatable words.

Line 20 defines the name of the translations file and line 21 attempts to open it.
If the file can’t be opened, then the program dies with an error message.

Line 24 loops though the translations file a line at a time, putting each line of
text into $line and line 25 removes the newline character from the line.

Line 26 splits the line on the tab character which separates the English and
American words.

Line 27 sets $word to the American word if the English word matches the word
we are seeking.

Line 29 closes the file.
Line 30 returns either the translation or the original word if a translation is not

found while looping through the file. This ensures that the function always returns
a valid word and therefore that the %trans hash will contain an entry for every
word that we’ve come across. If we didn’t do this, then for each word that didn’t
need to be translated, we would have no entry in the hash and would have to search
the entire translations file each time. This way we only search the translations file
once for each unique word.

Using the translation program
As an example of the use of this script, create a file called american.txt which con-
tains a line for each word that you want to translate. Each line should have the English
word followed by a tab character and the equivalent American word. For example:

hello<TAB>hiya
pavement<TAB>sidewalk

Create another file containing the text that you want to translate. In my test, I used

Hello.
Please stay on the pavement.

Regular expressions 73
and running the program using the command line

translate.pl < in.txt

produced the output

hiya.
Please stay on the sidewalk.

If you wanted to keep the translated text in another text file then you could run the
program using the command line

translate.pl < in.txt > out.txt

Once again we make use of the power of the UNIX filter model as discussed in
chapter 2.

This isn’t a particularly useful script. It doesn’t, for example, handle capitaliza-
tion of the words that it translates. In the next section we’ll look at something a lit-
tle more powerful.

4.2.5 More examples: /etc/passwd

Let’s look at a few more examples of real-world data munging tasks for which you
would use regular expressions. In these examples we will use a well-known standard
UNIX data file as our input data. The file we will use is the /etc/passwd file which
stores a list of users on a UNIX system. The file is a colon-separated, record-based
file. This means that each line in the file represents one user, and the various pieces
of information about each user are separated with a colon. A typical line in one of
these files looks like this:

dave:Rg6kuZvwIDF.A:501:100:Dave Cross:/home/dave:/bin/bash

The seven sections of this line have the following meanings:

1 The username
2 The user’s password (in an encrypted form)9

3 The unique ID of the user on this system
4 The ID of the user’s default group
5 The user’s full name10

6 The path to the user’s home directory
7 The user’s command shell

9 On a system using shadow passwords, the encrypted password won’t be in this field.
10 Strictly, this field can contain any text that the system administrator chooses—but this is my system and

I’ve chosen to store full names here.

74 CHAPTER

Pattern matching
The precise meaning of some of these fields may not be clear to non-UNIX users,
but it should be clear enough to understand the following examples.

Example: reading /etc/passwd
Let’s start by writing a routine to read the data into internal data structures. This
routine can then be used by any of the following examples. As always, for flexibility,
we’ll assume that the data is coming in via STDIN.

sub read_passwd {

my %users;

my @fields = qw/name pword uid gid fullname home shell/;

while (<STDIN>) {
chomp;
my %rec;

@rec{@fields) = split(/:/);

$users{$rec->{name}} = \%rec;
}

return \%users;
}

In a similar manner to other input routines we have written, this routine reads the
data into a data structure and returns a reference to that data structure. In this case
we have chosen a hash as the main data structure, as the users on the system have no
implicit ordering and it seems quite likely that we will want to get the information
on a specific user. A hash allows us to do this very easily. This raises one other issue:
what is the best choice for the key of the hash? The answer depends on just what we
are planning to do with the data, but in this case I have chosen the username. In
other cases the user ID might be a useful choice. All of the other columns would be
bad choices, as they aren’t guaranteed to be unique across all users.11

So, we have decided on a hash where the keys are the usernames. What will the
values of our hash be? In this case I have chosen to use another level of hash where
the keys are the names of the various data values (as defined in the array @fields)
and the values are the actual values.

Our input routine therefore reads each line from STDIN and splits it on colons
and puts the values directly into a hash called %rec. A reference to %rec is then
stored in the main %users hash. Notice that because %rec is a lexical variable that is
scoped to within the while loop, each time around the loop we get a new variable

11 It seems unlikely that the home directory of a user would be nonunique, but it is (just) possible to imag-
ine scenarios where it makes sense for two or more users to share a home directory.

Regular expressions 75
and therefore a new reference. If %rec were declared outside the loop it would
always be the same variable and every time around the loop we would be overwrit-
ing the same location in memory.

Having created a hash for each line in the input file and assigned it to the correct
record in %users, our routine finally returns a reference to %users. We are now
ready to start doing some real work.

Example: listing users
To start with, let’s produce a list of all of the real names of all of the users on the
system. As that would be a little too simple we’ll introduce a couple of refinements.
First, included in the list of users in /etc/passwd are a number of special accounts
that aren’t for real users. These will include root (the superuser), lp (a user ID
which is often used to carry out printer administration tasks) and a number of other
task-oriented users. Assuming that we can detect these uses by the fact that their full
names will be empty, we’ll exclude them from the output. Secondly, in the original
file, the full names are in the format <forename> <surname>. We’ll print them out
as <surname>, <forename>, and sort them in surname order. Here’s the script:

1: use strict;
2:
3: my $users = read_passwd();
4:
5: my @names;
6: foreach (keys %{$users}) {
7: next unless $users->{$_}{fullname};
8:
9: my ($forename, $surname) = split(/\s+/, $users->{$_}{fullname}, 2);

10:
11: push @names, "$surname, $forename";
12: }
13:
14: print map { "$_\n" } sort @names;

Most of this script is self-explanatory. The key lines are:
Line 6 gets each key in the %users hash in turn.
Line 7 skips any record that doesn’t have a full name, thereby ignoring the spe-

cial users.
Line 9 splits the full name on white space. Note that we pass a third argument to

split.12 This limits the number of elements in the returned list.

12 Notice, however, that we are making assumptions here about the format of the name. This algorithm
assumes that the first word in the name is the forename and everything else is the surname. If the name is
not in this format then things will go wrong. For example, think about what would happen if the name
were “Dame Elizabeth Taylor” or “Randal L. Schwartz.” As always, it is very important to know your data.

76 CHAPTER

Pattern matching
Line 11 builds the reversed name and pushes it onto another array.
Line 14 prints the array of names in sorted order.

Example: listing particular users
Now suppose we want to get a report on the users that use the Bourne shell (/bin/
sh). Maybe we want to email them to suggest that they use bash instead. We might
write something like this:
1: use strict;
2:
3: my $users = read_passwd();
4:
6: foreach (keys %{$users}) {
7: print "$_\n" if $users->{$_}{shell} eq '/bin/sh';
8: }

Again we have a very simple script. Most of the real work is being done on line 7.
This line checks the value in $users->{$_}{shell} against the string “/bin/sh”,
and if it matches it prints out the current key (which is the username). Notice that
we could also have chosen to match against a regular expression using the code
print "$_\n" if $users->{$_}{shell} =~ m|^/bin/sh$|

If performance is important to you, then you could benchmark the two solutions
and choose the faster one. Otherwise the solution you choose is a matter of per-
sonal preference.

4.2.6 Taking it to extremes

Of course, using regular expressions for transforming data is a very powerful technique
and, like all powerful techniques, it is open to abuse. As an example of what you can do
with this technique, let’s take a brief look at the Text::Bastardize module which is
available from the CPAN at http://search.cpan.org/search?dist=Text-Bastardize.

This module will take an innocent piece of text and will abuse it in various
increasingly bizarre ways. The complete set of transformations available in the cur-
rent version (0.06 as of the time of writing) is as follows:

■ rdct—Converts the text to hyperreductionist English. This removes vowels
within words, changes “you” to “u” and “are” to “r” and carries out a num-
ber of other conversions.

■ pig—Converts the text to Pig Latin. Pig Latin is a bizarre corruption of
English in which the first syllable of a word is moved to the end of the word
and the sound “ay” is appended.

■ k3wlt0k—Converts the text to “cool-talk” as used by certain denizens of the
Internet (the d00dz who deal in k3wl war3z).

Further information 77
■ rot13—Applies rot13 “encryption” to the text. In this very basic type of
encryption, each letter is replaced with one that is thirteen letters past it in
the alphabet. This method is often used in newsgroup posts to disguise
potential plot spoilers or material which might give offense to casual readers.

■ rev—Reverses the order of the letters in the text.
■ censor—Censors text which might be thought inappropriate. It does this by

replacing some of the vowels with asterisks.
■ n20e—Performs numerical abbreviations on the text. Words over six letters

in length have all but their first and last letters removed and replaced with a
number indicating the number of letters removed.

It is, of course, unlikely that this module is ever used as anything other than an
example of a text transformation tool, but it is a very good example of one and it
can be very instructive to look at the code of the module.

As an example of the use of the module, here is a script that performs all of the
transformations in turn on a piece of text that is read from STDIN. Notice that the
piece of text that is to be transformed is set using the charge function.

#!/usr/perl/bin/perl -w

use strict;
use Text::Bastardize;

my $text = Text::Bastardize->new;

print 'Say something: ';
while (<STDIN>) {

chomp;
$text->charge($_);
foreach my $xfm (qw/rdct pig k3wlt0k rot13 rev censor n20e/) {

print "$xfm: ";
print eval "\$text->$xfm";
print "\n";

}
}

4.3 Further information

The best place to obtain definitive information about regular expressions is from
the perlre manual page that comes with every installation of Perl. You can access
this by typing

perldoc perlre

on your command line.

78 CHAPTER

Pattern matching
You can get more information than you will ever need from Mastering Regular
Expressions, by Jeffrey Friedl (O’Reilly).

4.4 Summary

■ Perl has very powerful text matching and processing facilities.
■ Often you can achieve what you want using basic text-processing functions

such as substr, index, and uc.
■ Regular expressions are a more powerful method of describing text that you

want to match.
■ Regular expressions are most often used in the text matching (m//) and text

substitution (s///) operators.

Part II

Data munging

In which our heroes first come into contact with the data munging
beast. Three times they battle it, and each time the beast takes on a dif-
ferent form.

At first the beast appears without structure and our heroes fight val-
iantly to impose structure upon it. They learn new techniques for find-
ing hidden structure and emerge triumphant.

The second time the beast appears structured into records. Our
heroes find many ways to split the records apart and recombine them in
other useful ways.

The third time the beast appears in even more strongly structured
forms. Once again our heroes discover enough new techniques to see
through all of their enemies’ disguises.

Our heroes end this section of the tale believing that they can handle
the beast in all of its guises, but disappointment is soon to follow.

5Unstructured data
What this chapter covers:
■ Reading an ASCII file
■ Producing text statistics
■ Performing format conversions
■ Reformatting numbers
81

82 CHAPTER

Unstructured data
The simplest kind of data that can require munging is unstructured data. This is
data that has no internal structure imposed on it in any way. In some ways this is the
most difficult data to deal with as there is often very little that you can do with it.

A good example of unstructured data is a plain ASCII file that contains text. In
this chapter we will look at some of the things that we can do with a file like this.

5.1 ASCII text files

An ASCII text file contains data that is readable by a person. It can be created in a
text editor like vi or emacs in UNIX, Notepad in Windows, or edit in DOS. You
should note that the files created by most word processors are not ASCII text, but
some proprietary text format.1 It is also possible that the file could be created by
some other computer system.

An ASCII text file, like all data files, is nothing but a series of bytes of binary data.
It is only the software that you use to view the file (an editor perhaps) that inter-
prets the different bytes of data as ASCII characters.

5.1.1 Reading the file

One of the simplest things that we can do with an ASCII file is to read it into a data
structure for later manipulation. The most suitable format for the data structure
depends, of course, on the exact nature of the data in the file and what you are plan-
ning to do with it, but for readable text an array of lines will probably be the most
appropriate structure. If you are interested in the individual words in each line then
it will probably make sense to split each line into an array of words. Notice that
because order is important when reading text we use Perl arrays (which are also
ordered) to store the data, rather than hashes (which are unordered).

Example: Reading text into an array of arrays
Let’s write an input routine that will read an unstructured text file into an array of
arrays. As always we will assume that the file is coming to us via STDIN.

1: sub read_text {
2:
3: my @file;
4:
5: push @file, [split] while <STDIN>;
6:
7: return \@file;
8: }

1 Most word processors do have a facility to save the document in ASCII text format; however, this will de-
stroy most of the formatting of the document.

ASCII text files 83
Let’s look at this line by line.
Line 3 defines a variable that will contain the array of lines. Each element of this

array will be a reference to another array. Each element of these second-level arrays
will contain one of the words from the line.

Line 5 does most of the work. It might be easier to follow if you read it in
reverse. It is actually a contraction of code that, when expanded, looks something
like this:

while (<STDIN>) {
my @line = split(/\s+/, $_);
push @file, [@line];

}

which may be a little easier to follow. For each line in the file, we split the line wher-
ever we see one or more white space characters. We then create an anonymous array
which is a copy of the array returned by split and push the reference returned by the
anonymous array constructor onto an @file.

Also implicit in this line is our definition of a word. In this case we are using
Perl’s built-in \s character class to define our word separators as white space charac-
ters (recall that split uses \s+ as the delimiter by default). Your application may
require something a little more complicated.

Line 7 returns a reference to the array.
Our new function can be called like this:

my $file = read_text;

and we can then access any line of the file using

my $line = $file->[$x];

where $x contains the number of the line that we are interested in. After this call,
$line will contain a reference to the line array. We can, therefore, access any given
word using

my $word = $line->[$y];

or, from the original $file reference:

my $word = $file->[$x][$y];

Of course, all of this is only a very good idea if your text file is of a reasonable size, as
attempting to store the entire text of “War and Peace” in memory may cause your
computer to start swapping memory to disk, which will slow down your program.2

2 Then again, if you have enough memory that you can store the entire text of War and Peace in it without
swapping to disk, that would be the most efficient way to process it.

84 CHAPTER

Unstructured data
Finer control of input
If you are, however, planning to store all of the text in memory then there are a
couple of tricks that might be of use to you. If you want to read the file into an
array of lines without splitting the lines into individual words, then you can do it in
one line like this:

my @file = <FILE>;

If, on the other hand, you want the whole text to be stored in one scalar variable
then you should look at the $/ variable. This variable is the input record separator
and its default value is a newline character. This means that, by default, data read
from a <> operator will be read until a newline is encountered. Setting this variable
to undef will read the whole input stream in one go.3 You can, therefore, read in a
whole file by doing this

local $/ = undef;
my $file = <FILE>;

You can set $/ to any value that your program will find useful. Another value that is
often used is an empty string. This puts Perl into paragraph mode where a blank
line is used as the input delimiter.

If your file is too large to fit efficiently into memory then you are going to have
to process a row at a time (or a record at a time if you have changed $/). We will
look at line-based and record-based data in the next chapter, but for the rest of this
chapter we will assume that we can get the whole file in memory at one time.

5.1.2 Text transformations

Having read the file into our data structures, the simplest thing to do is to trans-
form part of the data using the simple regular expression techniques that we dis-
cussed in the last chapter. In this case the lines or individual words of the data are
largely irrelevant to us, and our lives become much easier if we read the whole file
into a scalar variable.

Example: simple text replacement
For example, if we have a text file where we want to convert all instances of “Win-
dows” to “Linux”, we can write a short script like this:

my $file;

{
local $/ = undef;

3 Note that $/ (like most Perl internal variables) is, by default, global, so altering it in one place will affect
your whole program. For that reason, it is usually a good idea to use local and enclosing braces to ensure
that any changes have a strictly limited scope.

ASCII text files 85
$file = <STDIN>;
}

$file =~ s/Windows/Linux/g;

print $file;

Notice how the section that reads the data has been wrapped in a bare block in
order to provide a limited scope for the local copy of the $/ variable. Also, we have
used the g modifier on the substitution command in order to change all occur-
rences of Windows.

All of the power of regular expression substitutions is available to us. It would be
simple to rewrite our translation program from the previous chapter to translate the
whole input file in one operation.

5.1.3 Text statistics

One of the useful things that we can do is to produce statistics on the text file. It is
simple to produce information on the number of lines or words in a file. It is only a
little harder to find the longest word or to produce a table that counts the occur-
rences of each word. In the following examples we will assume that a file is read in
using the read_text function that we defined earlier in the chapter. This function
returns a reference to an array of arrays. We will produce a script that counts the
lines and words in a file and then reports on the lengths of words and the most-used
words in the text.

Example: producing text statistics

1: # Variables to keep track of where we are in the file
2: my ($line, $word);
3:
4: # Variables to store stats
5: my ($num_lines, $num_words);
6: my (%words, %lengths);
7:
8: my $text = read_text();
9:

10: $num_lines = scalar @{$text};
11:
12: foreach $line (@{$text}) {
13: $num_words += scalar @{$line};
14:
15: foreach $word (@{$line}) {
16: $words{$word}++;
17: $lengths{length $word}++;
18: }
19: }
20:

86 CHAPTER

Unstructured data
21: my @sorted_words = sort { $words{$b} <=> $words{$a} } keys %words;
22: my @sorted_lengths = sort { $lengths{$b} <=> $lengths{$a} } keys %lengths;
23:
24: print "Your file contains $num_lines lines ";
25: print "and $num_words words\n\n";
26:
27: print "The 5 most popular words were:\n";
28: print map { "$_ ($words{$_} times)\n" } @sorted_words[0 .. 4];
29:
30: print "\nThe 5 most popular word lengths were:\n";
31: print map { "$_ ($lengths{$_} words)\n" } @sorted_lengths[0 .. 4];

Line 2 declares two variables that we will use to keep track of where we are in the file.
Lines 5 and 6 declare four variables that we will use to produce the statistics.

$num_lines and $num_words are the numbers of lines and words in the file.
%words is a hash that will keep a count of the number of times each word has
occurred in the file. Its key will be the word and its value will be the number of
times the word has been seen. %lengths is a hash that keeps count of the frequency
of word lengths in a similar fashion.

Line 8 calls our read_text function to get the contents of the file.
Line 10 calculates the number of lines in the file. This is simply the number of

elements in the $text array.
Line 12 starts to loop around each line in the array.
Line 13 increases the $num_words variable with the number of elements in the

$line array. This is equal to the number of words in the line.
Line 15 starts to loop around the words on the line.
Lines 16 and 17 increment the relevant entries in the two hashes.
Lines 21 and 22 create two arrays which contain the keys of the %words and

%lengths hashes, sorted in the order of decreasing hash values.
Lines 24 and 25 print out the total number of words and lines in the file.
Lines 27 and 28 print out the five most popular words in the file by taking the

first five elements in the @sorted_words array and printing the value associated
with that key in the %words hash. Lines 30 and 31 do the same thing for the
@sorted_lengths array.

Example: calculating average word length
As a final example of producing text file statistics, let’s calculate the average word
length in the files. Once again we will use the existing read_text function to read
in our text.

my ($total_length, $num_words);
my $text = read_text();

Data conversions 87
my ($word, $line);
foreach $line (@{$text}) {

$num_words += scalar @{$line};

foreach $word (@{$line}) {
$total_length += length $word;

}
}

printf "The average word length is %.2f\n", $total_length / $num_words;

5.2 Data conversions

One of the most useful things that you might want to do to unstructured data is to
perform simple data format conversions on it. In this section we’ll take a look at
three typical types of conversions that you might need to do.

5.2.1 Converting the character set

Most textual data that you will come across will be in ASCII, but there may well be
occasions when you have to deal with other character sets. If you are exchanging
data with IBM mainframe systems then you will often have to convert data to and
from EBCDIC. You may also come across multibyte characters if you are dealing with
data from a country where these characters are commonplace (like China or Japan).

Unicode
For multibyte characters, Perl version 5.6 includes some support for Unicode via
the new utf8 module. This was introduced in order to make it easier to work with
XML using Perl (XML uses Unicode in UTF-8 format to define all of its character
data). If you have an older version of Perl you may find the Unicode::Map8 and
Unicode::String modules to be interesting.

Converting between ASCII and EBCDIC
For converting between ASCII and EBCDIC you can use the Convert::EBCDIC
module from the CPAN. This module can be used either as an object or as a traditional
module. As a traditional module, it exports two functions called ascii2ebcdic and
ebcdic2ascii. Note that these functions need to be explicitly imported into your
namespace. As an object, it has two methods called toascii and toebcdic. The fol-
lowing example uses the traditional method to convert the ASCII data arriving on
STDIN into EBCDIC.

use strict;
use Convert::EBCDIC qw/ascii2ebcdic/;

my $data;

88 CHAPTER

Unstructured data
{
local $/ = undef;
$data = <STDIN>;

}

print ascii2ebcdic($data);

The second example uses the object interface to convert EBCDIC data to ASCII.

use strict;
use Convert::EBCDIC;

my $data;
my $conv = Convert::EBCDIC->new;

my $data;

{
local $/ = undef;
$data = <STDIN>;

}

print $conv->toascii($data);

The Convert::EBCDIC constructor takes one optional parameter which is a 256
character string which defines a translation table.

5.2.2 Converting line endings

As I mentioned above, an ASCII text file is no more than a stream of binary data. It
is only the software that we use to process it that interprets the data in such a way
that it produces lines of text. One important character (or sequence of characters)
in a text file is the character which separates different lines of text. When, for exam-
ple, a text editor reaches this character in a file, it will know that the following char-
acters must be displayed starting at the first column of the following line of the
user’s display.

Different line end characters
Over the years, two characters in particular have come to be the most commonly
used line end characters. They are the characters with the ASCII codes 10 (line feed)
and 13 (carriage return). The line feed is used by UNIX (and Linux) systems. Apple
Macintoshes use the carriage return. DOS and Windows use a combination of both
characters, the carriage return followed by the line feed.

This difference in line endings causes no problems when data files are used on the
same system on which they were created, but when you start to transfer data files
between different systems it can lead to some confusion. You may have edited a file
that was created under Windows in a UNIX text editor. If so you will have seen an

Data conversions 89
extra ^M character at the end of each line of text.4 This is the printable equivalent of
the carriage return character that Windows inserts before each line feed. Similarly, a
UNIX text file opened in Windows Notepad will have no carriage returns before the
line feed and, therefore, Notepad will not recognize the end of line character
sequence. All the lines will subsequently be run together, separated only by a black
rectangle, which is Windows’ way of representing the unprintable line feed character.

There are ways to avoid this problem. Transferring files between systems using
FTP in ASCII mode, for example, will automatically convert the line endings into
the appropriate form. It is almost guaranteed, however, that at some point you will
find yourself dealing with a data file that has incorrect line endings for your system.
Perl is, of course, the perfect language for correcting this problem.

Example: a simple line end conversion filter
The following program can be used as a filter to clean up problem files. It takes two
parameters, which are the line endings on the source and target systems. These are
the strings CR, LF, or CRLF.

In the program, instead of using \n and \r we use the ASCII control character
sequences \cM and \cJ (Ctrl-M and Ctrl-J). This is because Perl is cleverer than we
might like it to be in this case. Whenever Perl sees a \n sequence in a program it
actually converts it to the correct end-of-line character sequence for the current sys-
tem. This is very useful most of the time (it means, for example, that you don’t
need to use print "some text\r\n"; to output text when using Perl on a Win-
dows system). But in this situation it masks the very problem that we’re trying to
solve—so we have to go to a lower level representation of the characters.

#!/usr/local/bin/perl -w

use strict;

(@ARGV == 2) or die "Error: source and target formats not given.";

my ($src, $tgt) = @ARGV;

my %conv = (CR => "\cM",
LF => "\cJ",
CRLF => "\cM\cJ");

$src = $conv{$src};
$tgt = $conv{$tgt};

$/ = $src;
while (<STDIN>) {

4 This is becoming less common as many editors will now display the lines without the ^M, and indicate the
newline style in the status line.

90 CHAPTER

Unstructured data
s/$src/$tgt/go;
print;

}

Notice that we use the o modifier on the substitution as we know that the source
will not change during the execution of the while loop.

5.2.3 Converting number formats

Sometimes the unstructured data that you receive will contain numerical data and
the only changes that you will want to make are to reformat the numbers into a
standardized format. This breaks down into two processes. First you have to recog-
nize the numbers you are interested in, then you need to reformat them.

Recognizing numbers
How do you recognize a number? The answer depends on what sort of numbers
you are dealing with. Are they integers or floating points? Can they be negative? Do
you accept exponential notation (such as 1E6 for 1 × 106)? When you answer
these questions, you can build a regular expression that matches the particular type
of number that you need to process.

To match natural numbers (i.e., positive integers) you can use a simple regular
expression such as:

/\d+/

To match integers (with optional +/- signs) use

/[-+]?\d+/

To match a floating point number use

/[-+]?(\d+(\.\d*)?|\.\d+)/

To match a number that can optionally be in exponential notation, use

/[-+]?(?=\d|\.\d)\d*(\.\d*)?([eE]([-+]?\d+))?/

As these become rather complex, it might be a suitable time to consider using Perl’s
precompiled regular expression feature and creating your number-matching regular
expressions in advance. You can do something like this:

my $num_re = qr/[-+]?(?=\d|\.\d)\d*(\.\d*)?([eE]([-+]?\d+))?/;

my @nums;
while ($data =~ /$num_re/g) {

push @nums, $1;
}

to print out a list of all of the numbers in $data.

Data conversions 91
If you have a function, reformat, that will change the numbers into your pre-
ferred format then you can use code like this:

$data =~ s/$num_re/reformat($1)/ge;

which makes use, once more, of the e modifier to execute the replacement string
before using it.

Reformatting numbers with sprintf
The simplest way to reformat a number is to pass it through sprintf. This will
enable you to do things like fix the number of decimal places, pad the start of the
number with spaces or zeroes, and right or left align the number within its field.
Here is an example of the sort of things that you can do:

my $number = 123.456789;

my @fmts = ('0.2f', '.2f', '10.4f', '-10.4f');

foreach (@fmts) {
my $fmt = sprintf "%$_", $number;
print "$_: [$fmt]\n";

}

which gives the following output:

0.2f: [123.46]
.2f: [123.46]
10.4f: [123.4568]
-10.4f: [123.4568]

(The brackets are there to show the exact start and end of each output field.)

Reformatting numbers with CPAN modules
There are, however, a couple of modules available on the CPAN which allow you
to do far more sophisticated formatting of numbers. They are Convert::SciEng
and Number::Format.

Convert::SciEng
Convert::SciEng is a module for converting numbers to and from a format in
which they have a postfix letter indicating the magnitude of the number. This con-
version is called fixing and unfixing the number. The module recognizes two
different schemes of fixes, the SI scheme and the SPICE scheme. The module inter-
face is via an object interface. A new object is created by calling the class new method
and passing it a string indicating which fix scheme you want to use (SI or SPICE).

my $conv = Convert::SciEng->new('SI');

You can then start fixing and unfixing numbers. The following:

92 CHAPTER

Unstructured data
print $conv->unfix('2.34u');

will print the value 2.34e-06. The “u” is taken to mean the SI symbol for microunits.
You can also pass an array to unfix, as in

print map { "$_\n" } $conv->unfix(qw/1P 1T 1G 1M 1K 1 1m 1u 1p 1f 1a/);

which will produce the output

1e+015
1000000000000
1000000000
1000000
1000
1
0.001
1e-006
1e-012
1e-015
1e-018

(and also demonstrates the complete range of postfixes understood by the SI scheme).
You can also adjust the format in which the results are returned in by using the

format method and passing it a new format string. The format string is simply a
string that will be passed to sprintf whenever a value is required. The default for-
mat is %5.5g.

There is, of course, also a fix method that takes a number and returns a value
with the correct postfix letter appended:

print $conv->fix(100_000)

prints “100K” and

print $conv->fix(1_000_000)

prints “1M”.

Number::Format
The Number::Format module is a more general-purpose module for formatting
numbers in interesting ways. Like Convert::SciEng, it is accessed through an
object-oriented interface. Calling the new method creates a new formatter object.
This method takes as its argument a hash which contains various formatting
options. These options are detailed in appendix A along with the other object
methods contained within Number::Format.

Here are some examples of using this module:

my $fmt = Number::Format->new; # use all defaults

my $number = 1234567.890;

Data conversions 93
print $fmt->round($number), "\n";
print $fmt->format_number($number), "\n";
print $fmt->format_negative($number), "\n";
print $fmt->format_picture($number, '###########'), "\n";
print $fmt->format_price($number), "\n";
print $fmt->format_bytes($number), "\n";
print $fmt->unformat_number('1,000,000.00'), "\n";

This results in:

1234567.89
1,234,567.89
-1234567.89

1234568
USD 1,234,567.89
1.18M
1000000

Changing the formatting options slightly:

my $fmt = Number::Format->new(INTL_CURRENCY_SYMBOL => 'GBP',
DECIMAL_DIGITS => 1);

my $number = 1234567.890;

print $fmt->round($number), "\n";
print $fmt->format_number($number), "\n";
print $fmt->format_negative($number), "\n";
print $fmt->format_picture($number, '###########'), "\n";
print $fmt->format_bytes($number), "\n";
print $fmt->unformat_number('1,000,000.00'), "\n";

results in:

1234567.9
1,234,567.9
-1234567.89

1234568
GBP 1,234,567.89
1.18M
1000000

If we were formatting numbers for a German system, we might try something like this:

my $de = Number::Format->new(INT_CURR_SYMBOL => 'DEM ',
THOUSANDS_SEP => '.',
DECIMAL_POINT => ',');

my $number = 1234567.890;

print $de->format_number($number), "\n";
print $de->format_negative($number), "\n";
print $de->format_price($number), "\n";

which would result in:

94 CHAPTER

Unstructured data
1.234.567,89
-1234567.89
DEM 1.234.567,89

And finally, if we were accountants, we might want to do something like this:

my $fmt = Number::Format->new(NEG_FORMAT=> '(x)');

my $debt = -12345678.90;

print $fmt->format_negative($debt);

which would give us:

(12345678.90)

It is, of course, possible to combine Number::Format with some of the other tech-
niques that we were using earlier. If we had a text document that contained num-
bers in different formats and we wanted to ensure that they were all in our standard
format we could do it like this:

use Number::Format;

my $data;

{
local $/ = undef;
$data = <STDIN>;

}

my $fmt = Number::Format->new;

my $num_re = qr/[-+]?(?=\d|\.\d)\d*(\.\d*)?([eE]([-+]?\d+))?/;

$data =~ s/$num_re/$fmt->format_number($1)/ge;

print $data;

5.3 Further information

For more information about input control variables such as $/, see the perldoc
perlvar manual pages.

For more information about the Unicode support in Perl, see the perldoc
perlunicode and perldoc utf8 manual pages.

For more information about sprintf, see the perldoc -f sprintf manual page.
Both Convert::SciEng and Number::Format can be found on the CPAN.

Once you have installed them, their documentation will be available using the
perldoc command.

Summary 95
5.4 Summary

■ Most unstructured data is found in ASCII text files.
■ Perl can be used to extract statistics from text files very easily.
■ Many useful data format conversions can be carried out either using the stan-

dard Perl distribution or with the addition of modules from the CPAN.

6Record-oriented data
What this chapter covers:
■ Reading, writing, and processing simple

record-oriented data
■ Caching data
■ Currency conversion
■ The comma separated value format
■ Creating complex data records
■ Problems with date fields
96

Simple record-oriented data 97
A very large proportion of the data that you will come across in data munging tasks
will be record oriented. In this chapter we will take a look at some common ways to
deal with this kind of data.

6.1 Simple record-oriented data

We have already seen examples of simple record-oriented data. The CD data file that
we examined in previous chapters had one line of data for each CD in my collection.
Each of these lines of data is a record. As we will see later, a record can be larger or
smaller than one line, but we will begin by looking in more detail at files where each
line is one record.

6.1.1 Reading simple record-oriented data

Perl makes it very easy to deal with record-oriented data, particularly simple records
of the type we are discussing here. We have seen before the idiom where you can
read a file a line at a time using a construct like

while (<FILE>) {
chomp; # remove newline
each line in turn is assigned to $_

}

Let’s take a closer look and see what Perl is doing here to make life easier.
The most important part of the construct is the use of <FILE> to read data from

the file handle FILE which has presumably been assigned to a file earlier in the pro-
gram by a call to the open function. This file input operator can return two differ-
ent results, depending on whether it is used in scalar context or array context.

When called in a scalar context, the file input operator returns the next record
from the file handle. This begs the obvious question of what constitutes a record.
The answer is that input records are separated by a sequence of characters called
(logically enough) the input record separator. This value is stored in the variable $/.
The default value is a newline \n (which is translated to the appropriate actual char-
acters for the specific operating system), but this can be altered to any other string of
characters. We will look at this usage in more detail later, but for now the default
value will suffice.

When called in an array context, the file input operator returns a list in which
each element is a record from the input file.

You can, therefore, call the file input operator in one of these two ways:

my $next_line = <FILE>;
my @whole_file = <FILE>;

98 CHAPTER

Record-oriented data
In both of these examples it is important to realize that each record—whether it is
the record stored in $next_line or one of the records in @whole_file—will still
contain the value of $/ at the end.1 Often you will want to get rid of this and the
easiest way to do it is by using the chomp function. chomp is passed either a scalar or
an array and removes the value of $/ from the end of the scalar or each element of
the array. If no argument is passed to chomp then it works on $_.2

Reading data a record at a time (from first principles)
Now that we understand a little more about the file input operator and chomp, let’s
see if we can build our standard data munging input construct from first principles.

A first attempt at processing each line in a file might look something like this:

my $line;
while ($line = <FILE>) {

chomp $line;
…

}

This is a good start, but it has a subtle bug in it. The conditional expression in the
while loop is checking for the truth of the scalar variable $line. This variable is set
from the next line taken from FILE. Generally this is fine, but there are certain con-
ditions when a valid line in a file can evaluate to false. The most obvious of these is
when the final line in a file contains the value 0 (zero) and has no end of line char-
acters after it.3 In this case, the variable $line will contain the value 0 which will
evaluate as false and the final line of the file will not be processed.

Although this bug is a little obscure, it is still worthwhile finding a solution that
doesn’t exhibit this problem. This is simple enough to do by checking that the line
is defined instead of evaluating to true. The contents of a variable are said to be
defined if they are not the special Perl value undef. Any variable that contains a
value that evaluates to false will still be defined. Whether or not a value is defined
can be tested using the defined function. The file input operator returns undef
when the end of the file is reached. We can therefore rewrite our first attempt into
something like this:

1 Except, possibly, the last line in the file.
2 In versions of Perl before Perl 5, the chomp function did not exist. Instead we had to use a function called

chop, which simply removed the last character from a string without checking what it was. As this is still
an occasionally useful thing to do to a string, chop is still available in Perl, but most of the time chomp is
more appropriate.

3 It would have to the be last line, because for any other line, the existence of the end of line characters
following the data will ensure that there is enough data in the string for it to evaluate as true.

Simple record-oriented data 99
my $line;
while (defined($line = <FILE>)) {

chomp $line;
…

}

and this will exhibit all of the behavior that we need. There are still a couple of
improvements that we can make, but these are more about making the code Perlish
than about fixing bugs.

The first of the changes is to make use of the Perl default variable $_. A lot of
Perl code can be made more streamlined by using $_. In this case it makes a small
amount of difference. We no longer need to define $line and we can make use of
the fact that chomp works on $_ by default. Our code will now look like this:

while (defined($_ = <FILE>)) {
chomp;
…

}

The last piece of optimization is one that you wouldn’t be able to guess at, as it uses
a piece of syntactic sugar that was put in by the authors of Perl when they realized
what a common task this would be. If the file input operator is the only thing that is
in the conditional expression of a while loop, then the result of the operator is
magically assigned to the $_ variable and the resulting value is checked to see that it
is defined (rather than checking that it is true.) This means that you can write:

while (<FILE>)) {
chomp;
…

}

at which point we are back with our original code (but, hopefully, with a deeper
understanding of the complexities beneath the surface of such simple looking code).

Notice that this final optimization is dependent on two things being true:

1 The file input operator must be the only thing in the conditional expres-
sion, so you can’t write things like
while (<FILE> and $_ ne 'END') { # THIS DOESN'T WORK!

…
}

2 The conditional expression must be part of a while loop, so you can’t write
things like
if (<FILE>) { # THIS DOESN'T WORK EITHER!

print;
} else {

print "No data\n";
}

100 CHAPTER

Record-oriented data
Counting the current record number
While looping through a file like this it is often useful to know which line you are
currently processing. This useful information is stored in the $. variable.4 The value
is reset when the file handle is closed, which means that this works:

open FILE, 'input.txt' or die "Can't open input file: $!\n";
while (<FILE>) {

do stuff
}

print "$. records processed.\n";
close FILE;

but the following code is wrong as it will always print zero.

THIS CODE DOESN'T WORK
open FILE, "input.txt" or die "Can't open input file: $!\n";
while (<FILE>) {

do stuff
}

close FILE;
print "$. records processed.\n";

In many of these examples, I have moved away from using STDIN, simply to indi-
cate that these methods will work on any file handle. To finish this section, here is a
very short example using STDIN that will add line numbers to any file passed to it.

#!/usr/local/bin/perl -w
use strict;

print "$.: $_" while <STDIN>;

6.1.2 Processing simple record-oriented data

So now that we know how to get our records from the input stream (either one at a
time or all together in an array) what do we do with them? Of course, the answer to
that question depends to a great extent on what your end result should be, but here
are a few ideas.

Extracting data fields
Chances are that within your record there will be individual data items (otherwise
known as fields) and you will need to break up the record to access these fields.
Fields can be denoted in a record in a number of ways, but most methods fall into

4 Actually, $. contains the current line number in the file handle that you read most recently. This allows you
to still use $. if you have more than one file open. It’s also worth mentioning that the definition of a line
is determined by the contents of the input separator variable ($/), which we’ll cover in more detail later.

Simple record-oriented data 101
one of two camps. In one method the start and end of a particular field is denoted
by a sequence of characters that won’t appear in the fields themselves. This is
known as delimited or separated data.5 In the other method each field is defined to
take up a certain number of characters and is space—or zero—padded if it is less
than the defined size. This is known as fixed-width data. We will cover fixed-width
data in more detail in the next chapter and for now will limit ourselves to separated
and delimited data.

We have seen separated data before. The CD example that we have looked at in
previous chapters is an example of a tab-separated data file. In the file each line rep-
resents one CD, and within a line the various fields are separated by the tab charac-
ter. An obvious way to deal with this data is the one that we used before, i.e., using
split to separate the record into individual fields like this:

my $record = <STDIN>;
chomp $record;
my @fields = split(/\t/, $record);

The fields will then be in the elements of @fields. Often, a more natural way to
model a data record is by using a hash. For example, to build a %cd hash from a
record in our CD file, we could do something like this:

my $record = <STDIN>;
chomp $record;
my %cd;
($cd{artist}, $cd{title}, $cd{label}, $cd{year}) = split (/\t/, $record);

We can then access the individual fields within the record using:

my $label = $cd{label};
my $title = $cd{title};

and so on.
Within the actual CD file input code from chapter 3 we simplified this code

slightly by writing it like this:

my @fields = qw/artist title label year/;
my $record = <FILE>;
chomp $record;
my %cd;
@cd{@fields} = split(/\t/, $record);

5 Strictly speaking, there is a difference between separated and delimited data. Separated data has a character
sequence between each field and delimited data has a character sequence at the start and end of each field.
In practical terms, however, the methods for dealing with them are very similar and many people tend to
use the terms as if they are interchangeable.

102 CHAPTER

Record-oriented data
In this example we make use of a hash slice to make assigning values to the hash
much easier. Another side effect is that it makes maintenance a little easier as well. If
a new field is added to the input file, then the only change required to the input
routine is to add another element to the @fields array.

We now have a simple and efficient way to read in simple record-oriented data
and split each record into its individual fields.

6.1.3 Writing simple record-oriented data

Of course, having read in your data and carried out suitable data munging, you will
next need to output your data in some way. The obvious choice is to use print,
but there are other options and even print has a few subtleties that will make your
life easier.

Controlling output—separating output records
In the same way that Perl defines a variable ($/) that contains the input record sep-
arator, it defines another variable ($\) which contains the output record separator.
Normally this variable is set to undef which leaves you free to control exactly where
you output the record separator. If you set it to another value, then that value will
be appended to the end of the output from each print statement. If you know that
in your output file each record must be separated by a newline character, then
instead of writing code like this:

foreach (@output_records) {
print "$_\n";

}

you can do something like this:

{
local $\ = "\n";
foreach (@output_records) {

print;
}

}

(Notice how we’ve localized the change to $\ so that we don’t inadvertently break
any print statements elsewhere in the program.)

Generally people don’t use this variable because it isn’t really any more efficient.

Controlling output—printing lists of items
Other variables that are much more useful are the output field separator ($,) and
the output list separator ($"). The output field separator is printed between the ele-
ments of the list passed to a print statement and the output list separator is printed

Simple record-oriented data 103
between the elements of a list that is interpolated in a double quoted string. These
concepts are dangerously similar so let’s see if we can make it a little clearer.

In Perl the print function works on a list. This list can be passed to the function
in a number of different ways. Here are a couple of examples:

print 'This list has one element';
print 'This', 'list', 'has', 'five', 'elements';

In the first example the list passed to print has only one element. In the second
example the list has five elements that are separated by commas. The output field
separator ($,) controls what is printed between the individual elements. By
default, this variable is set to the empty string (so the second example above prints
Thislisthasfiveelements). If we were to change the value of $, to a space
character before executing the print statement, then we would get something a
little more readable. The following:

$, = ' ';
print 'This', 'list', 'has', 'five', 'elements';

produces the output

This list has five elements

This can be useful if your output data is stored in a number of variables. For exam-
ple, if our CD data was in variables called $band, $title, $label, and $year and
we wanted to create a tab separated file, we could do something like this:

$\ = "\n";
$, = "\t";
print $band, $title, $label, $year;

which would automatically put a tab character between each field and a newline
character on the end of the record.

Another way that a list is often passed to print is in an array variable. You will
sometimes see code like this:

my @list = qw/This is a list of items/;
print @list;

in which case the elements of @list are printed with nothing separating them
(Thisisalistofitems). A common way to get round this is to use join:

my @list = qw/This is a list of items/;
print join(' ', @list);

which will put spaces between each of the elements being printed.
A more elegant way to handle this is to use the list separator variable ($"). This

variable controls what is printed between the elements of an array when the array is

104 CHAPTER

Record-oriented data
in double quotes. The default value is a space. This means that if we change our
original code to

my @list = qw/This is a list of items/;
print "@list";

then we will get spaces printed between the elements of our list. In order to print
the data with tabs separating each record we simply have to set $" to a tab character
(\t). In chapter 3 when we were reading in the CD data file we stored the data in
an array of hashes. An easy way to print out this data would be to use code like this:

my @fields = qw/name title label year/;

local $" = "\t";
local $\ = "\n";

foreach (@CDs) {
my %CD = %$_;
print "@CD{@fields}";

}

Controlling output—printing to different file handles
Recall that the syntax of the print statement is one of the following:

print;
print LIST;
print FILEHANDLE LIST;

In the first version the contents of $_ are printed to the default output file handle (usu-
ally STDOUT). In the second version the contents of LIST are printed to the default out-
put file handle. In the third version the contents of LIST are printed to FILEHANDLE.

Notice that I said that the default output file handle is usually STDOUT. If you are
doing a lot of printing to a different file handle, then it is possible to change the
default using the select function.6 If you call select with no parameters, it will
return the name of the currently selected output file handle, so

print select;

will normally print main::STDOUT. If you call select with the name of a file han-
dle, it will replace the current default output file handle with the new one. It returns
the previously selected file handle so that you can store it and reset it later. If you
needed to write a lot of data to a particular file, you could use code like this:

open FILE, '>out.txt' or die "Can't open out.txt: $!";
my $old = select FILE;

6 Or rather one of the select functions. Perl has two functions called select and knows which one you
mean by the number of arguments you pass it. This one has either zero arguments or one argument. The
other one (which we won’t cover in this book as it is used in network programming) has four arguments.

Simple record-oriented data 105
foreach (@data) {
print;

}
select $old;

Between the two calls to select, the default output file handle is changed to be
FILE and all print statements without a specific file handle will be written to FILE.
Notice that when we have finished we reset the default file handle to whatever it
was before we started (we stored this value in $file). You shouldn’t assume that
the default file handle is STDOUT before you change it, as some other part of the
program may have changed it already.

Another variable that is useful when writing data is $|. Setting this variable to a
nonzero value will force the output buffer to be flushed immediately after every
print (or write) statement. This has the effect of making the output stream look
as if it were unbuffered. This variable acts on the currently selected output file han-
dle. If you want to unbuffer any other file handle, you will need to select it, change
the value of $|, and then reselect the previous file handle using code like this:

my $file = select FILE;
$| = 1;
select $file;

While this works, it isn’t as compact as it could be, so in many Perl programs you
will see this code instead:

select((select(FILE), $| = 1)[0]);

This is perhaps one of the strangest looking pieces of Perl that you’ll come across
but it’s really quite simple if you look closely.

The central part of the code is building a list. The first element of the list is the
return value from select(FILE), which will be the previously selected file handle.
As a side effect, this piece of code selects FILE as the new default file handle. The
second element of the list is the result of evaluating $| = 1, which is always 1. As a
side effect, this code will unbuffer the current default file handle (which is now
FILE). The code now takes the first element of this list (which is the previously
selected file handle) and passes that to select, thereby returning the default file
handle to its previous state.

6.1.4 Caching data

One common data munging task is translating data from one format to another
using a lookup table. Often a good way to handle this is to cache data as you use it,
as the next example will demonstrate.

106 CHAPTER

Record-oriented data
Example: currency conversion
A good example of data translation would be converting data from one currency to
another. Suppose that you were given a data file with three columns, a monetary
amount, the currency that it is in,7 and the date that should be used for currency
conversions. You need to be able to present this data in any of a hundred or so pos-
sible currencies. The daily currency rates are stored in a database. In pseudocode, a
first attempt at this program might look something like this:

Get target currency
For each data row

Split data into amount, currency, and date
Get conversion rate between source and target currencies on given date
Multiply amount by conversion rate
Output converted amount

Next

This would, of course, do the job but is it the most efficient way of doing it? What
if the source data was all in the same currency and for the same date? We would end
up retrieving the same exchange rate from the database each time.

Maybe we should read all of the possible exchange rates in at the start and store
them in memory. We would then have very fast access to any exchange rate without
having to go back to the database. This option would work if we had a reasonably
small number of currencies and a small range of dates (perhaps we are only con-
cerned with U.S. dollars, Sterling, and Deutschmarks over the last week). For any
large number of currencies or date range, the overhead of reading them all into
memory would be prohibitive. And, once again, if the source data all had the same
currency and date then we would be wasting a lot of our time.

The solution to our problem is to cache the exchange rates that we have already
read from the database. Look at this script:

#!/usr/bin/perl -w
my $target_curr = shift;
my %rates;
while (<STDIN>) {
chomp;

my ($amount, $source_curr, $date) = split(/\t/);
$rates{"$source_curr|$target_curr|$date"} ||= get_rate($source_curr,

$target_curr,
$date);

$amount *= $rates{"$source_curr|$target_curr|$date"};
print "$amount\t$target_curr\t$date\n";

}

7 The International Standards Organization (ISO) defines a list of three letter codes for each internationally
recognized currency (USD for U.S. Dollar, GBP for the pound sterling, and a hundred or so others).

Simple record-oriented data 107
In this script we assume that the get_rate function goes to the database and
returns the exchange rate between the source and target currencies on the given
date. We have introduced a hash which caches the return values from this function.
Remember that in Perl

$a ||= $b;

means the same thing as

$a = $a || $b;

and also that the Perl || operator is short-circuiting, which means that the expres-
sion after the operator is only evaluated if the expression before the operator is false.

Bearing this in mind, take another look at this line of the above script:

$rates{"$source_curr|$target_curr|$date"} ||= get_rate($source_curr,
$target_curr,
$date);

The first time that this line is reached, the %rates hash is empty. The get_rate
function is therefore called and the exchange rate that is returned is written into the
hash with a key made up from the three parameters.

The next time that this line is reached with the same combination of parameters,
a value is found in the hash and the get_rate function does not get called.8

Taking caching further—Memoize.pm
This trick is very similar to the Orcish Manoeuvre which we saw when we were dis-
cussing sorting techniques in chapter 3. It is, however, possible to take things one
step further. On the CPAN there is a module called Memoize.pm which was written
by Mark-Jason Dominus. This module includes a function called memoize which
will automatically wrap caching functionality around any function in your program.
We would use it in our currency conversion script like this:

#!/usr/bin/perl –w
use Memoize;
memoize 'get_rate';

my $target_curr = shift;
while (<STDIN>) {
chomp;

8 You might notice that we’re checking the value in the hash rather than the existence of a value. This may
cause a problem if the value can legitimately be zero (or any other value which is evaluated as false—the
string “0”, the empty string, or the value undef). In this case the existence of a zero exchange rate may
cause a few more serious problems than a bug in a Perl script, so I think that we can safely ignore that
possibility. You may need to code around this problem.

108 CHAPTER

Record-oriented data
my ($amount, $source_curr, $date) = split(/\t/);
$amount *= get_rate($source_curr, $target_curr, $date);

print "$amount\t$target_curr\t$date\n";
}

Notice how the introduction of Memoize actually simplifies the code. What Memoize
does is it replaces any call to a memoized function (get_rate in our example) with a
call to a new function. This new function checks an internal cache and calls the origi-
nal function only if there is not an appropriate cached value already available. An arti-
cle explaining these concepts in some detail appeared in issue 13 (Vol. 4, No. 1)
Spring 1999 of The Perl Journal.

Not every function call is a suitable candidate for caching or memoization but,
when you find one that is, you can see a remarkable increase in performance.

6.2 Comma-separated files

A very common form of record-oriented data is the comma-separated value (CSV)
format. In this format each record is one line of the data file and within that record
each field is separated with commas. This format is often used for extracting data
from spreadsheets or databases.

6.2.1 Anatomy of CSV data

At first glance it might seem that there is nothing particularly difficult about dealing
with comma-separated data. The structure is very similar to the tab or pipe sepa-
rated files that we have looked at before. The difference is that while tab and pipe
characters are relatively rare in many kinds of data, the comma can quite often
appear in data records, especially if the data is textual. To get around these problems
there are a couple of additions to the CSV definition. These are:

■ A comma should not be classed as a separator if it is in a string that is
enclosed in double quotes.

■ Within a double quoted string, a double quote character is represented by
two consecutive double quotes.

Suddenly things get a bit more complex. This means that the following is a valid
CSV record:

"Cross, Dave",07/09/1962,M,"Field with ""embedded"" quotes"

We can’t simply split this data on commas, as we would have done before because
the extra comma in the first field will generate an extra field. Also, the double
quotes around the first and last fields are not part of the data and need to be
stripped off and the doubled double quotes in the last field need to be converted to
single double quotes!

Comma-separated files 109
6.2.2 Text::CSV_XS

Fortunately, this problem has already been solved for you. On the CPAN there is a
module called Text::CSV_XS9 which will extract the data from CSV files and will
also generate CSV records from your data. The best way to explain how it works is
to leap right in with an example or two. Suppose that we had a CSV file which con-
tained data like the previous example line. The code to extract and print the data
fields would look like this:

use Text::CSV_XS;

my $csv = Text::CSV->new;

$csv->parse(<STDIN>);
my @fields = $csv->fields;

local $" = '|';
print "@fields\n";

Assuming the input line above, this will print:

Cross, Dave|07/09/1962|M|Field with "embedded" quotes

Notice the use of $" to print pipe characters between the fields.
Text::CSV_XS also works in reverse. It will create CSV records from your data.

As an example, let’s rebuild the same data line from the individual data fields.

my @new_cols = ('Cross, Dave', '07/09/1962', 'M',
'Field with "embedded" quotes');

$csv->combine(@new_cols);

print $csv->string;

This code prints:

"Cross, Dave",07/09/1962,M,"Field with ""embedded"" quotes"

which is back to our original data.
The important functions in Text:CSV are therefore:

■ new—Creates a CSV object through which all other functions can be called.
■ parse($csv_data)—Parses a CSV data string that is passed to it. The

extracted columns are stored internally within the CSV object and can be
accessed using the fields method.

■ fields—Returns an array containing the parsed CSV data fields.

9 Text::CSV_XS is a newer and faster version of the older Text::CSV module. As the name implies,
Text::CSV_XS is partially implemented in C, which makes it faster. The Text::CSV module is pure Perl.

110 CHAPTER

Record-oriented data
■ combine(@fields)—Takes a list of data fields and converts them into a CSV
data record. The CSV record is stored internally within the CSV object and
can be accessed using the string method.

■ string—Returns a string which is the last created CSV data record.

With this in mind, it is simple to create generic CSV data reading and writing routines.

use Text::CSV;

sub read_csv {
my $csv = Text::CSV->new;

my @data;

while (<STDIN>) {
$csv->parse($_);
push @data, [$csv->fields];

}

return \@data;
}

sub write_csv {
my $data = shift;
my $csv = Text::CSV->new;

foreach (@$data) {
$csv->combine(@$_);
print $csv->string;

}
}

These functions would be called from within a program like this:

my $data = read_csv;

foreach (@$data) {
Do something to each record.
Individual fields are accessed as
$_->[0], $_->[1], etc …

}

write_csv($data);

6.3 Complex records

All of the data we have seen up to now has had one line per record, but as I hinted
earlier it is quite possible for data records to span more than one line in a data file.
Perl makes it almost as simple to deal with nearly any kind of data. The secret to
handling more complex data records is to make good use of the Perl variables that
we mentioned in previous sections.

Complex records 111
6.3.1 Example: a different CD file

Imagine, for example, if our CD file was in a slightly different format, like this:

Name: Bragg, Billy
Title: Workers' Playtime
Label: Cooking Vinyl
Year: 1987
%%
Name: Bragg, Billy
Title: Mermaid Avenue
Label: EMI
Year: 1998
%%
Name: Black, Mary
Title: The Holy Ground
Label: Grapevine
Year: 1993
%%
Name: Black, Mary
Title: Circus
Label: Grapevine
Year: 1996
%%
Name: Bowie, David
Title: Hunky Dory
Label: RCA
Year: 1971
%%
Name: Bowie, David
Title: Earthling
Label: EMI
Year: 1997

In this case the data is exactly the same, but a record is now spread over a number of
lines. Notice that the records are separated by a line containing the character
sequence %%.10 This will be our clue in working out the best way to read these
records. Earlier we briefly mentioned the variable $/ which defines the input record
separator. By setting this variable to an appropriate value we can get Perl to read the
file one whole record at a time. In this case the appropriate value is \n%%\n. We can
now read in records like this:

local $/ = "\n%%\n";
while (<STDIN>) {

chomp;
print "Record $. is\n$_";

}

10 This is a surprisingly common record separator, due to its use as the record separator in the data files read
by the UNIX fortune program.

112 CHAPTER

Record-oriented data
Remember that when Perl reads to the next occurrence of the input record separa-
tor, it includes the separator character sequence in the string that it returns. We
therefore use chomp to remove that sequence from the string before processing it.

So now we have the record in a variable. How do we go about extracting the
individual fields from within the records? This is relatively easy as we can go back to
using split to separate the fields. In this case the field separator is a newline char-
acter so that is what we need to split on.

local $/ = "\n%%\n";
while (<STDIN>) {

chomp;
print join('|', split(/\n/)), "\n";

}

This code will print each of the records on one line with the fields separated by a
pipe character. We are very close to having all of the fields in a form that we can use,
but there is one more step to take.

Making use of the extra data
One difference between this format and the original (one record per line) format
for the CD file is that the individual fields are now labeled. We need to lose these
labels, but we can first make good use of them. Eventually we want each of our
records to end up in a hash. The values of the hash will be the values of the data
fields, but what are the keys? In previous versions of the CD input routines we have
always hard-coded the names of the data fields, but here we have been given them.
Let’s use them to create the keys of our hash. This will hopefully become clearer
when you see this code:

1: $/ = "\n%%\n";
2:
3: my @CDs;
4:
5: while (<STDIN>) {
6: chomp;
7: my (%CD, $field);
8:
9: my @fields = split(/\n/);

10: foreach $field (@fields) {
11: my ($key, $val) = split (/:\s*/, $field, 2);
12: $CD{lc $key} = $val;
13: }
14:
15: push @CDs, \%CD;
16: }

Complex records 113
Let’s examine this code line by line.

Line 1 sets the input record separator to be %%\n.
Line 3 defines an array variable that we will use to store the CDs.
Line 5 starts the while loop which reads each line from STDIN in to $_.
Line 6 calls chomp to remove the %%\n characters from the end of $_.
Line 7 defines two temporary variables. %CD will store the data for one CD and

$field will be used as temporary storage when processing the fields.
Line 9 creates an array @fields which contains each of the fields in the record,

split on the newline character. Notice that split throws away the separator charac-
ter so that the fields in the array do not have newline characters at the end of them.

Line 10 starts a foreach loop which processes each field in the record in turn.
The field being processed is stored in $field.

Line 11 splits the field into its key and its value, assigning the results to $key and
$value. Note that the regular expression that we split on is /:\s*/. This matches a
colon followed by zero or more white space characters. In our sample data, the sep-
arator is always a colon followed by exactly one space, but we have made our script
a little more flexible. We also pass a limit to split so that the list returned always
contains two or fewer elements.

Line 12 assigns the value to the key in the %CD hash. Notice that we actually use
the lower-case version of $key. Again this just allows us to cope with a few more
potential problems in the input data.

Line 13 completes the foreach loop. At this point the %CD hash should have
four records in it.

Line 15 pushes a reference to the %CD onto the @CDs array.
Line 16 completes the while loop. At this point the @CDs array will contain a

reference to one hash for each of the CDs in the collection.

6.3.2 Special values for $/

There are two other commonly used values for $/—undef and the empty string.
Setting $/ to undef puts Perl into “slurp mode.” In this mode there are no record
separators and the whole input file will be read in one go. Setting $/ to the empty
string puts Perl into “paragraph mode.” In this mode, records are separated by one
or more blank lines. Note that this is not the same as setting $/ to \n\n. If a file has
two or more consecutive blank lines then setting $/ to \n\n will give you extra
empty records, whereas setting it to the empty string will soak up any number of
blank lines between records. There are, of course, times when either of these behav-
iors is what is required.

You can also set $/ to a reference to a scalar (which should contain an integer).
In this case Perl will read that number of bytes from the input stream. For example:

114 CHAPTER

Record-oriented data
local $/ = \1024;
my $data = <DATA>;

will read in the next kilobyte from the file handle DATA. This idiom is more useful
when reading binary files.

One thing that you would sometimes like to do with $/ is set it to a regular
expression so that you can read in records that are delimited by differing record
markers. Unfortunately, you must set $/ to be a fixed string, so you can’t do this.
The best way to get around this is to read the whole file into a scalar variable (by
setting $/ to undef) and then use split to break it up into an array of records.
The first parameter to split is interpreted as a regular expression.

6.4 Special problems with date fields

It is very common for data records to contain dates.11 Unfortunately, Perl’s date
handling seems to be one of the areas that confuses a large number of people, which
is a shame, because it is really very simple. Let’s start with an overview of how Perl
handles dates.

6.4.1 Built-in Perl date functions

As far as Perl is concerned, all dates are measured as a number of seconds since the
epoch. That sounds more complex than it is. The epoch is just a date and time from
which all other dates are measured. This can vary from system to system, but on
many modern computer systems (including all UNIX systems) the epoch is defined
as 00:00:00 GMT on Thursday, Jan. 1, 1970. The date as I’m writing this is
943011797, which means that almost a billion seconds have passed since the begin-
ning of 1970.

Getting the current date and time with time functions
You can attain the current date and time in this format using the time function. I
generated the number in the last paragraph by running this at my command line:

perl -e "print time";

This can be useful for calculating the time that a process has taken to run. You can
write something like this:

my $start = time;

Do lots of clever stuff

11 When I mention dates in this section, I generally mean dates and times.

Special problems with date fields 115
my $end = time;

print "Process took ", $end - $start, " seconds to run.";

More readable dates and times with localtime
This format for dates isn’t very user friendly, so Perl supplies the localtime func-
tion to convert these values into readable formats, adjusted for your current time
zone.12 localtime takes one optional argument, which is the number of seconds
since the epoch. If you don’t pass this argument it calls time to get the current
time. localtime returns different things depending on whether it is called in scalar
or array context. In a scalar context it returns the date in a standard format. You can
see this by running

perl -e "print scalar localtime"

at your command line. Notice the use of scalar to force a scalar context on the
function call, as print gives its arguments an array context. To find when exactly a
billion seconds will have passed since the epoch you can run:

perl -e "print scalar localtime(1_000_000_000)"

(which prints “Sun Sep 9 01:46:40 2001” on my system) and to find out when the
epoch is on your system use:

perl -e "print scalar localtime(0)"

In an array context, localtime returns an array containing the various parts of the
date. The elements of the array are:

■ the number of seconds (0–60)13

■ the number of minutes (0–59)
■ the hour of the day (0–23)
■ the day of the month (1–31)
■ the month of the year (0–11)
■ the year, as the number of years since 1900.
■ the day of the week (0 is Sunday and 6 is Saturday)
■ the day of the year
■ a Boolean flag indicating whether daylight savings time is in effect.

Some of these fields cause a lot of problems.

12 There is another function, gmtime, which does the same as localtime, but doesn’t make time zone
adjustments and returns values for GMT.

13 The 61st second is there to handle leap seconds.

116 CHAPTER

Record-oriented data
The month and the day of the week are given as zero-based numbers. This is
because you are very likely to convert these into strings using an array of month or
day names.

The year is given as the number of years since 1900. This is well-documented
and has always been the case, but the fact that until recently this has been a two-
digit number has led many people to believe that it returns a two-digit year. This
has led to a number of broken scripts gaining a great deal of currency and it is com-
mon to see scripts that do something like this:

my $year = (localtime)[5];
$year = "19$year"; # THIS IS WRONG!

or (worse)

$year = ($year < 50) ? "20$year" : "19$year"; # THIS IS WRONG!

The correct way to produce a date using localtime is to do something like this:

my @months = qw/January February March April May June July August
September October November December/;

my @days = qw/Sunday Monday Tuesday Wednesday Thursday Friday Saturday/;

my @now = localtime;

$now[5] += 1900;

my $date = sprintf '%s %02d %s %4d, %02d:%02d:%02d',
$days[$now[6]], $now[3], $months[$now[4]], $now[5],
$now[2], $now[1], $now[0];

As hinted in the code above, if you don’t need all of the date information, it is sim-
ple enough to use an array slice to get only the parts of the array that you want.
These are all valid constructions:

my $year = (localtime)[5];
my ($d, $m, $y) = (localtime)[3 .. 5];
my ($year, $day_no) = (localtime)[5, 7];

Getting the epoch seconds using timelocal
It is therefore easy enough to convert the return value from time to a readable date
string. It would be reasonable to want to do the same in reverse. In Perl you can do
that by using the timelocal function. This function is not a Perl built-in function,
but is included in the standard Perl library in the module Time::Local.

To use timelocal, you pass it a list of time values in the same format as they are
returned by localtime. The arguments are seconds, minutes, hours, day of
month, month (January is 0 and December is 11), and year (in number of years
since 1900; e.g., 2000 would be passed in as 100). For example to find out how
many seconds will have passed at the start of the third millennium (i.e., Jan. 1,
2001) you can use code like this:

Special problems with date fields 117
use Time::Local;

my $secs = timelocal(0, 0, 0, 1, 0, 101);

Examples: date and time manipulation using Perl built-in functions
With localtime and timelocal it is possible to do just about any kind of data
manipulation that you want. Here are a few simple examples.

Finding the date in x days time
This is, in principle, simple but there is one small complexity. The method that we
use is to find the current time (in seconds) using localtime and add 86,400 (24 x
60 x 60) for each day that we want to add. The complication arises when you try to
calculate the date near the time when daylight saving time either starts or finishes. At
that time you could have days of either 23 or 25 hours and this can affect your calcu-
lation. To counter this we move the time to noon before carrying out the calculation.

use Time::Local;

my @now = localtime; # Get the current date and time

my @then = (0, 0, 12, @now[3 .. 5]); # Normalize time to 12 noon

my $then = timelocal(@then); # Convert to number of seconds

$then += $x * 86_400; # Where $x is the number of days to add

@then = localtime($then); # Convert back to array of values

@then[0 .. 2] = @now[0 .. 2]; # Replace 12 noon with real time

$then = timelocal(@then); # Convert back to number of seconds

print scalar localtime $then; # Print result

Finding the date of the previous Saturday
Again, this is pretty simple, with just one slightly complex calculation, which is
explained in the comments. We work out the current day of the week and, therefore,
can work out the number of days that we need to go back to get to Saturday.

my @days = qw/Sunday Monday Tuesday Wednesday Thursday Friday
Saturday/;

my @months = qw/January February March April May June July August
September October November December/;

my $when = 6; # Saturday is day 6 in the week.
You can change this line to get other days of the week.

my $now = time;
my @now = localtime($now);

This is the tricky bit.
$diff will be the number of days since last Saturday.
$when is the day of the week that we want.

118 CHAPTER

Record-oriented data
$now[6] is the current day of the week.
We take the result modulus 7 to ensure that it stays in the
range 0 - 6.
my $diff = ($now[6] - $when + 7) % 7;

my $then = $now - (24 * 60 * 60 * $diff);

my @then = localtime($then);

$then[5] += 1900;

print "$days[$then[6]] $then[3] $months[$then[4]] $then[5]";

Finding the date of the first Monday in a given year
This is very similar in concept to the last example. We calculate the day of the week
that January 1 fell on in the given year, and from that we can calculate the number
of days that we have to move forward to get to the first Monday.

use Time::Local;

Get the year to work on
my $year = shift || (localtime)[5] + 1900;

Get epoch time of Jan 1st in that year
my $jan_1 = timelocal(0, 0, 0, 1, 0, $year - 1900);

Get day of week for Jan 1
my $day = (localtime($jan_1))[6];

Monday is day 1 (Sunday is day 0)
my $monday = 1;

Calculate the number of days to the first Monday
my $diff = (7 - $day + $monday) % 7;

Add the correct number of days to $jan_1
print scalar localtime($jan_1 + (86_400 * $diff));

Better date and time formatting with POSIX::strftime
There is one other important date function that comes with the Perl standard
library. This is the strftime function that is part of the POSIX module. POSIX is an
attempt to standardize system calls across a number of computer vendors’ systems
(particularly among UNIX vendors) and the Perl POSIX module is an interface to
these standard functions. The strftime function allows you to format dates and
times in a very controllable manner. The function takes as arguments a format
string and a list of date and time values in the same format as they are returned by
localtime. The format string can contain any characters, but certain character
sequences will be replaced by various parts of the date and time. The actual set of
sequences supported will vary from system to system, but most systems should sup-
port the sequences shown in table 6.1.

Special problems with date fields 119
Here is a simple script which uses strftime.

use POSIX qw(strftime);

foreach ('%c', '%A %d %B %Y', 'Day %j', '%I:%M:%S%p (%Z)') {
print strftime($_, localtime), "\n";

}

which gives the following output:

22/05/00 14:38:38
Monday 22 May 2000
Day 143
02:38:38PM (GMT Daylight Time)

Table 6.1 POSIX::strftime character sequences

%a short day name (Sun to Sat)

%A long day name (Sunday to Saturday)

%b short month name (Jan to Dec)

%B long month name (January to December)

%c full date and time in the same format as
localtime returns in scalar context

%d day of the month (01 to 31)

%H hour in 24-hour clock (00 to 23)

%I hour in 12-hour clock (01 to 12)

%j day of the year (001 to 366)

%m month of the year (01 to 12)

%M minutes after the hour (00 to 59)

%p AM or PM

%S seconds after the minute (00 to 59)

%w day of the week (0 to 6)

%y year of the century (00 to 99)

%Y year (0000 to 9999)

%Z time zone string (e.g., GMT)

%% a percent character

120 CHAPTER

Record-oriented data
International issues with date formats
One of the most intractable problems with dates has nothing to do with computer
software, but with culture. If I tell you that I am writing this on 8/9/2000, with-
out knowing whether I am European or American you have no way of knowing if I
mean the 8th of September or the 9th of August. For that reason I’d recommend
that whenever possible you always use dates that are in the order year, month, and
day as that is far less likely to be misunderstood. There is an ISO standard (number
8601) which recommends that dates and times are displayed in formats which can
be reproduced using the POSIX::strftime templates %Y-%m-%dT%h:%M:%S (for
date and time) or %Y-%m-%d (for just the date).

All of the functions that we have just discussed come with every distribution of
Perl. You should therefore see that it is quite easy to carry out complex date manip-
ulation with vanilla Perl. As you might suspect, however, on the CPAN there are a
number of modules that will make your coding life even easier. We will look in some
detail at two of them: Date::Calc and Date::Manip.

6.4.2 Date::Calc

Date::Calc contains a number of functions for carrying out calculations using dates.
One important thing to know about Date::Calc is that it represents dates dif-

ferently from Perl’s internal functions. In particular when dealing with months, the
numbers will be in the range 1 to 12 (instead of 0 to 11), and when dealing with
days of the week the numbers will be in the range 1 to 7 instead of 0 to 6.

Examples: date and time manipulation with Date::Calc
Let’s look at using Date::Calc for solving the same three problems that we dis-
cussed in the section on built-in functions.

Finding the date in x days time
With Date::Calc, this becomes trivial as we simply call Today to get the current
date and then call Add_Delta_Days to get the result. Of course we can also call
Date_to_Text to get a more user friendly output. The code would look like this:

print Date_to_Text(Add_Delta_Days(Today(), $x)); # Where $x is the
number of days to add

Finding the date of the previous Saturday
There are a number of different ways to solve this problem but here is a reasonably
simple one. We find the week number of the current week and then calculate the date
of Monday in this week. We then subtract two days to get to the previous Saturday.

my ($year, $month, $day) = Today;
my $week = Week_Number($year, $month, $day);

print Date_to_Text(Add_Delta_Days(Monday_of_Week($week, $year), -2));

Special problems with date fields 121
Finding the date of the first Monday in a given year
This isn’t as simple as it sounds. The obvious way would be to do this:

print Date_to_Text(Monday_of_Week(1, $year));

but if you try this for 2001 you’ll get Mon 31-Dec 2000. The problem is in the def-
inition of week one of a year. Week one of a year is defined to be the week that con-
tains January 4. You can, therefore, see that if the first Monday of the year is
January 5, then that day is defined as being in week two and the Monday of week
one is, in fact, December 29 of the previous year. We will need to do something a
little more sophisticated. If we calculate which week number contains January 7 and
then find the Monday of that week, we will always get the first Monday in the year.
The code looks like this:

my $week = Week_Number($year, 1, 7);
print Date_to_Text(Monday_of_Week($week, $year));

6.4.3 Date::Manip

Date::Manip is, if possible, even bigger and more complex than Date::Calc.
Many of the same functions are available (although, obviously, they often have dif-
ferent names).

Examples: date and time manipulation with Date::Manip
Let’s once more look at solving our three standard problems.

Finding the date in x days time
With Date::Manip, the code would look like this:

print UnixDate(DateCalc(ParseDateString('now'), "+${x}d"),
"%d/%m/%Y %H:%M:%S");

Where $x is the number of days to add

Finding the date of the previous Saturday
Again this is very simple with Date::Manip. We can use the Date_GetPrev func-
tion to get the date immediately. In the call to Date_GetPrev, 6 is for Saturday and
0 is the $curr flag so it won’t return the current date if today is a Saturday.

my $today = ParseDateString('today');
my $sat = Date_GetPrev($today, 6, 0);

print UnixDate($sat, "%d/%m/%Y");

Finding the date of the first Monday in a given year
This is another problem that is much easier with Date::Manip. We can use
Date_GetNext to get the date of the first Monday after January 1, passing it 1 in
the $curr flag so it returns the current date if it is a Monday.

122 CHAPTER

Record-oriented data
my $jan_1 = ParseDateString("1 Jan $year");
my $mon = Date_GetNext($jan_1, 1, 1);

print UnixDate($mon, "%d/%m/%Y");

6.4.4 Choosing between date modules

We have seen a number of different ways to handle problems involving dates. It
might be difficult to see how to choose between these various methods. My advice:
use built-in Perl functions unless you have a really good reason not to.

The major reason for this is performance. Date::Manip is a very large module
which does a number of very complex things and they are all implemented in pure
Perl code. Most things can be handled much more efficiently with custom written
Perl code. I hope I’ve demonstrated that there are very few date manipulations
which can’t be achieved with the standard Perl functions and modules. It is a ques-
tion of balancing the ease of writing the program against the speed at which it runs.

Benchmarking date modules
As an example, look at this benchmark program which compares the speed of the
Data::Manip ParseDate function with that of a piece of custom Perl code which
builds up the same string using localtime.

#!/usr/bin/perl -w

use strict;

use Date::Manip;
use Benchmark;

timethese(5000, {'localtime' => \<ime, date_manip => \&dmanip});

sub ltime {
my @now = localtime;

sprintf("%4d%02d%02d%02d:%02d:%02d",
$now[5] + 1900, ++$now[4], $now[3], $now[2], $now[1], $now[0]);

}

sub dmanip {
ParseDate('now');

}

Running this script gives the following output:

Benchmark: timing 5000 iterations of date_manip, localtime …
date_manip: 29 wallclock secs (28.89 usr + 0.00 sys = 28.89 CPU)
localtime: 2 wallclock secs (2.04 usr + 0.00 sys = 2.04 CPU)

As you can see, the standard Perl version is almost fifteen times faster.
Having seen this evidence, you might be wondering if it is ever a good idea to

use Date::Manip. There is one very good reason for using Date::Manip, and it is

Extended example: web access logs 123
the ParseDate function itself. If you are ever in a position where you are reading in
a date and you are not completely sure which format it will be in, then ParseDate
will most likely be able to read the date and convert it into a standard form. Here
are some of the more extreme examples of that in action:

use Date::Manip;

my @times = ('tomorrow',
'next wednesday',
'5 weeks ago');

foreach (@times) {
print UnixDate(ParseDate($_), '%d %b %Y'), "\n";

}

which displays:

08 Feb 2000
09 Feb 2000
03 Jan 2000

(or, rather, the equivalent dates for the date when it is run).

6.5 Extended example: web access logs

One of the most common sources of line-oriented data is a web server access log. It
seems that everyone needs to wring as much information as possible from these files
in order to see if their web site is attracting a large enough audience to justify the
huge sums of money spent on it.

Most web servers write access logs in a standard format. Here is a sample of a real
access log. This sample comes from a log written by an Apache web server. Apache
is the Open Source web server which runs more web sites than any other server.

158.152.136.193 - - [31/Dec/1999:21:27:27 -0800] "GET /index.html HTTP/1.1" 200 2987
158.152.136.193 - - [31/Dec/1999:21:27:27 -0800] "GET /head.gif HTTP/1.1" 200 4389
158.152.136.193 - - [31/Dec/1999:21:27:28 -0800] "GET /menu.gif HTTP/1.1" 200 7317

Each of these lines represents one access request that the server has received. Let’s
look at the fields in one of these lines and see what each one represents.

The first field is the IP address from which the request came. It is possible in
most web servers to have these addresses resolved to hostnames before they are
logged, but on a heavily used site this can seriously impact performance, so most
webmasters leave this option turned off.

The second and third fields (the two dash characters) denote which user made this
request. These fields will contain interesting data only if the requested page is not
public, so the user must go through some kind of authorization in order to see it.

124 CHAPTER

Record-oriented data
The fourth field is the date and time of the access. It shows the local date and
time together with the difference from UTC (so in this case the server is hosted in
the Pacific time zone of the U.S.A.).

The fifth field shows the actual HTTP request that was made. It is in three parts:
the request type (in this case, GET), the URL that was requested, and the protocol
used (HTTP/1.1).

The final two fields contain the response code that was returned to the browser
(200 means that the request was successful and the contents of the URL have been
sent) and the number of bytes returned.

Armed with this knowledge we can look at the three lines and work out exactly
what happened. At half past nine on New Year’s Eve someone at IP address
158.152.136.193 made three requests to the web site. The person requested
index.html, head.gif, and menu.gif. Each of these requests was successful and we
returned a total of 14,000 bytes to them.

This kind of analysis is very useful and not very difficult, but a busy web site will
have many thousands of hits every day. How are you supposed to get meaningful
information from that amount of input data? Using Perl, of course.

It wouldn’t be very difficult to write something to break apart a log line and ana-
lyze the data, but it’s not completely simple—some fields are separated by spaces,
others have embedded spaces. Luckily this is such a common task that someone has
already written a module to process web access logs. It is called Logfile and you can
find it on the CPAN.

Using Logfile is very simple. It consists of a number of submodules, each
tuned to handle a particular type of web server log. They are all subclasses of the
module Logfile::Base. As our access log was generated by Apache we will use
Logfile::Apache.

Logfile is an object-oriented module, so all processing is carried out via a Logfile
object. The first thing we need to do is create a Logfile object.

my $log = Logfile::Apache->new(File => 'access_log',
Group => [qw(Host Date File Bytes User)]);

The named parameters to this function make it very easy to follow what is going on.
The File parameter is the name of the access log that you want to analyze. Group is
a reference to a list of indexes that you will want to use to produce reports. The five
indexes listed in the code snippet correspond to sections of the Apache log record.
In addition to these, the module understands a couple of others. Domain is the top
level that the requesting host is in (e.g., .com, .uk, .org), which is calculated from
the hostname. Hour is the hour of the day that the request took place. It is calcu-
lated from the date field.

Extended example: web access logs 125
Having created the Logfile object you can then start to produce reports with it.
To list our files in order of popularity we can simply do this:

$log->report(Group => 'File');

which produces a report like this:

File Records
==================================
/ 11 2.53%
/examples 1 0.23%
/examples/index.html 1 0.23%
/images/graph 1 0.23%
/images/pix 1 0.23%
/images/sidebar 1 0.23%
/images/thumbnail 5 1.15%
/index 1 0.23%
.
.
.
[other lines snipped]

This is an alphabetized list of all of the files that were listed in the access log. We can
make more sense if we sort the output by number of hits and perhaps just list the
top ten files by changing the code like this:

$log->report(Group => 'File', Sort => 'Records', Top => 10);

We then get a more understandable report that looks like this:

File Records
==================================
/new/images 129 29.72%
/new/music 80 18.43%
/new/personal 52 11.98%
/new/friends 47 10.83%
/splash/splashes 28 6.45%
/new/pics 26 5.99%
/new/stuff 21 4.84%
/ 11 2.53%
/new/splash 6 1.38%
/images/thumbnail 5 1.15%

Perhaps instead of wanting to know the most popular files, you are interested in the
most popular times of the day that people visit your site. You can do this using the
Hour index. The following:

$log->report(Group => 'Hour');

will list all of the hours in chronological order and

$log->report(Group => 'Hour', Sort => 'Records');

126 CHAPTER

Record-oriented data
will order them by the number of hits in each hour. If you want to find the quietest
time of the day, simply reverse the order of the sort

$log->report(Group => 'Hour', Sort => 'Records', Reverse => 1);

There are a number of other types of reports that you can get using Logfile, but it
would be impossible to cover them all here. Have a look at the examples in the
README file and the test files to get some good ideas.

6.6 Further information

For more information about the $/, $, and $" variables (together with other useful
Perl variables) see the perldoc perlvar manual pages.

For more information about the built-in date handling functions see the
perldoc perlfunc manual pages.

For more information about the POSIX::strftime function see the perldoc
POSIX manual page and your system’s documentation for a list of supported char-
acter sequences.

Both the Date::Manip and Date::Calc modules are available from the CPAN.
Having installed them you can read their full documentation by typing perldoc
Date::Manip or perldoc Date::Calc at your command line.

6.7 Summary

■ Record-oriented data is very easy to handle in Perl, particularly if you make
appropriate use of the I/O control variables such as $/, $", and $,.

■ The Text::CSV_XS CPAN module makes it very easy to read and write
comma-separated values.

■ Data caching can speed up your programs when used carefully, and using
Memoize.pm can make adding caching to a program very easy.

■ Perl has very powerful built-in date and time processing functions.
■ More complex date and time manipulation can be carried out using modules

from CPAN.

7Fixed-width and
binary data
What this chapter covers:
■ Reading fixed-width data
■ Using regular expressions with

fixed-width data
■ Writing fixed-width data
■ Graphics file formats
■ Reading and writing MP3 files
127

128 CHAPTER

Fixed-width and binary data
In this chapter we will complete our survey of simple data formats by examining
fixed-width and binary data. Many of the methods we have discussed in previous
chapters will still prove to be useful, but we will also look at some new tricks.

7.1 Fixed-width data

Fixed-width data is becoming less common, but it is still possible that you will come
across it, particularly if you are exchanging data with an older computer system that
runs on a mainframe or is written in COBOL.

7.1.1 Reading fixed-width data

In a fixed-width data record, there is nothing to distinguish one data item from the
next one. Each data item is simply written immediately after the preceding one,
after padding it to a defined width. This padding can either be with zeroes or with
spaces and can be before or after the data.1 In order to interpret the data, we need
more information about the way it has been written. This is normally sent separately
from the data itself but, as we shall see later, it is also possible to encode this data
within the files.

Here is an example of two fixed-width data records:

00374Bloggs & Co 19991105100103+00015000
00375Smith Brothers 19991106001234-00004999

As you can see, it’s tricky to understand exactly what is going on here. It looks as
though there is an ascending sequence number at the start and perhaps a customer
name. Some of the data in the middle looks like it might be a date—but until we
get a full definition of the data we can’t be sure even how many data fields there are.

Here is the definition of the data:
■ Columns 1 to 5—Transaction number (numeric)
■ Columns 6 to 25—Customer name (text)
■ Columns 26 to 33—Date of transaction (YYYYMMDD)
■ Columns 34 to 39—Customer’s transaction number (numeric)
■ Column 40—Transaction direction (+/-)
■ Columns 41 to 48—Amount of transaction (numeric with two implied deci-

mal places)

1 Although it is most common to find numerical data prepadded with zeroes and text data postpadded
with spaces.

Fixed-width data 129
Now we can start to make some sense of the data. We can see that on Novem-
ber 5, 1999, we received a check (number 100103) for $150.00 from Bloggs &
Co. and on November 6, 1999, we paid $49.99 to Smith Brothers in response to
their invoice number 1234.

Example: extracting fixed-width data fields with substr
So how do we go about extracting that information from the data? Here’s a first
attempt using the substr function to do the work:

my @cols = qw(5 25 33 39 40 48);

while (<STDIN>) {
my @rec;

my $prev = 0;
foreach my $col (@cols) {

push @rec, substr($_, $prev, $col - $prev);
$prev = $col;

}
print join('¦', @rec);
print "\n";

}

While this code works, it’s not particularly easy to understand. We use an array of
column positions to tell us where each column ends. Notice that we’ve actually
used the positions where the columns begin rather than end. This is because the
column definitions that we were given start from column one, whereas Perl arrays
start from zero—all in all, not the most maintainable piece of code.

Example: extracting fixed-width data with regular expressions
Perhaps we’d do better if we used regular expressions:

my @widths = qw(5 20 8 6 1 8);

my $regex;

$regex .= "(.{$_})" foreach @widths;

while (<STDIN>) {
my @rec = /$regex/;
print join('¦', @rec);
print "\n";

}

In this case we’ve switched from using column start (or end) positions to using col-
umn widths. It’s not very difficult to build this list given our previous list. We then
use the list of widths to construct a regular expression which we can match against
each row of our data file in turn. The regular expression that we build looks like this:

130 CHAPTER

Fixed-width and binary data
(.{5})(.{20})(.{8})(.{6})(.{1})(.{8})

which is really a very simple regular expression. For each column in the data record,
there is an element of the form (.{x}), where x is the width of the column. This
element will match any character x times and the parentheses will save the result of
the match. Matching this regular expression against a data record and assigning the
result to an array will give us a list containing all of the $1, $2, … $n variables in order.

This isn’t a very interesting use of regular expressions. There must be a better way.

Example: extracting fixed-width data with unpack
In this case the best way is to use Perl’s unpack function. unpack takes a scalar
expression and breaks it into a list of values according to a template that it is given.
The template consists of a sequence of characters which define the type and size of
the individual fields. A simple way to break apart our current data would be like this:

my $template = 'a5a20a8a6aa8';

while (<STDIN>) {
my @rec = unpack($template, $_);
print join('¦', @rec);
print "\n";

}

which returns exactly the same set of data that we have seen in all of the examples
above. In this case our template consists of the letter a for each field followed by the
length of the field (the length is optional on single-character fields like our +/-
field). The a designates each field as an ASCII string, but the template can contain
many other options. For reference, here is one of the data lines that was produced
by the previous example:

00374¦Bloggs & Co ¦19991105¦100103¦+¦00015000

Notice that the numbers are still prepadded with zeroes and the string is still post-
padded with spaces. Now see what happens if we replace each a in the template
with an A.

00374¦Bloggs & Co¦19991105¦100103¦+¦00015000

The spaces at the end of the string are removed. Depending on your application,
this may or may not be what you want. Perl gives you the flexibility to choose the
most appropriate route.

There are a number of other options that can be used in the unpack template
and we’ll see some more of them when we look at binary data in more detail. For
ASCII data, only a and A are useful.

Fixed-width data 131
Multiple record types
One slight variation of the fixed-width data record has different sets of data fields for
different types of data within the same file. Consider a system that maintains a prod-
uct list and, at the end of each day, produces a file that lists all new products added
and old products deleted during the day. For a new product, you will need a lot of
data (perhaps product code, description, price, stock count and supplier identifier).
For the deleted product you only need the product code (but you might also list the
product description to make the report easier to follow). Each record will have some
kind of identifier and the start of the line denoting which kind of record it is. In our
example they will be the strings ADD and DEL. Here are some sample data:

ADD0101Super Widget 00999901000SUPP01
ADD0102Ultra Widget 01499900500SUPP01
DEL0050Basic Widget
DEL0051Cheap Widget

On the day covered by this data, we have added two new widgets to our product
catalogue. The Super Widget (product code 0101) costs $99.99 and we have 1000
in stock. The Ultra Widget (product code 0102) costs $149.99 and we have 500 in
stock. We purchase both new widgets from the same supplier. At the same time we
have discontinued two older products, the Basic Widget (Product Code 0050) and
the Cheap Widget (Product Code 0051).

Example: reading multiple fixed-width record types
A program to read a file such as the previous example might look like this:

my %templates = (ADD => 'a4A14a6a5a6',
DEL => 'a4A14');

while (<STDIN>) {
my ($type, $data) = unpack('a3a*', $_);
my @rec = unpack($templates{$type}, $data);
print "$type - ", join('¦', @rec);
print "\n";

}

In this case we are storing the two possible templates in a hash and unpacking the
data in two stages. In the first stage we separate the record type from the main part
of the data. We then use the record type to choose the appropriate template to
unpack the rest of the data. One thing that we haven’t seen before is the use of * as
a field length to mean “use all characters to the end of the string.” This is very use-
ful when we don’t know how long our string will be.

132 CHAPTER

Fixed-width and binary data
Data with no end-of-record marker
Another difference that you may come across with fixed-width data is that some-
times it comes without a defined end-of-record marker. As both the size of each field
in a record and the number of fields in a record are well defined, we know how long
each record will be. It is, therefore, possible to send the data as a stream of bytes and
leave it up to the receiving program to split the data into individual records.

Perl, of course, has a number of ways to do this. You could read the whole file
into memory and split the data using substr or unpack, but for many tasks the
amount of data to process makes this unfeasible.

The most efficient way is to use a completely different method of reading your
data. In addition to the <FILE> syntax that reads data from file handles one record
at a time, Perl supports a more traditional syntax using the read and seek func-
tions. The read function takes three or four arguments. The first three are: a file
handle to read data from, a scalar variable to read the data into, and the maximum
number of bytes to read. The fourth, optional, argument is an offset into the vari-
able where you want to start writing the data (this is rarely used). read returns the
number of bytes read (which can be less than the requested number if you are near
the end of a file) and zero when there is no more data to read.

Each open file handle has a current position associated with it called a file pointer
and read takes its data from the file pointer and moves the pointer to the end of the
data it has read. You can also reposition the file pointer explicitly using the seek
function. seek takes three arguments: the file handle, the offset you wish to move
to, and a value that indicates how the offset should be interpreted. If this value is 0
then the offset is calculated from the start of the file, if it is 1 the offset is calculated
from the current position, and if it is 2 the offset is calculated from the end of the
file. You can always find out the current position of the file pointer by using tell,
which returns the offset from the start of the file in bytes. seek and tell are often
unnecessary when handling ASCII fixed-width data files, as you usually just read the
file in sequential order.

Example: reading data with no end-of-record markers using read
As an example, if our previous data file were written without newlines, we could use
code like this to read it (obviously we could use any of the previously discussed
techniques to split the record up once we have read it):

my $template = 'A5A20A8A6AA8';

my $data;

while (read STDIN, $data, 48) {
my @rec = unpack($template, $data);

Fixed-width data 133
print join('¦', @rec);
print "\n";

}

Example: reading multiple record types without end-of-record markers
It is also possible to handle variable length, fixed-width records using a method sim-
ilar to this. In this case we read 3 bytes first to get the record type and then use this
to decide how many more bytes to read on a further pass.

my %templates = (ADD => {len => 35,
tem => 'a4A14a6a5a6'},

DEL => {len => 18,
tem => 'a4A14'});

my $type;
while (read STDIN, $type, 3) {

read STDIN, $data, $templates{$type}->{len};
my @rec = unpack($templates{$type}->{tem}, $data);
print "$type - ", join('¦', @rec);
print "\n";

}

Defining record structure within the data file
I mentioned earlier that it is possible that the structure of the data could be defined
in the file. You could then write your script to be flexible enough that it handles
any changes in the structure (assuming that the definition of the structure remains
the same).

There are a number of ways to encode this metadata, most of them based around
putting the information in the first row of the file. In this case you would read the
first line separately and parse it to extract the data. You would then use this informa-
tion to build the format string that you pass to unpack. Here are a couple of the
encoding methods that you might find—and how to deal with them.

Fixed-width numbers indicating column widths
In this case, the first line will be a string of numbers. You will be told how long each
number is (probably two or three digits). You can unpack the record into an array
of numbers. Each of these numbers is the width of one field. You can, therefore,
build up an unpack format to use on the rest of the file.

my $line = <STDIN>; # The metadata line

my $width = 3; # The width of each number in $line;

my $fields = length($line) / $width;

my $meta_fmt = 'a3' x $fields;

my @widths = unpack($meta_fmt, $line);

134 CHAPTER

Fixed-width and binary data
my $fmt = join('', map { "A$_" } @widths);

while (<STDIN>) {
my @data = unpack($fmt, $_);
Do something useful with the fields in @data

}

Notice that we can calculate the number of fields in each record by dividing the
length of the metadata record by the width of each number in it. It might be useful
to add a sanity check at that point to ensure that this calculation gives an integer
answer as it should.

Using this method our financial data file would look like this:

005020008006001008
00374Bloggs & Co 19991105100103+00015000
00375Smith Brothers 19991106001234-00004999

The first line contains the field widths (5, 20, 8, 6, 1, and 8), all padded out to
three digit numbers.

Field-end markers
In this method, the first row in the file is a blank row that contains a marker (per-
haps a | character) wherever a field will end in the following rows. In other words,
our example file would look like this:

| | | || |
00374Bloggs & Co 19991105100103+00015000
00375Smith Brothers 19991106001234-00004999

To deal with this metadata, we can split the row on the marker character and use
the length of the various elements to calculate the lengths of the fields:

my $line = <STDIN>; # The metadata line
chomp $line;
my $mark = '|'; # The field marker
my @fields = split($mark, $line);

my @widths = map { length($_) + 1 } @fields;

my $fmt = join('', map { "A$_" } @widths);

while (<STDIN>) {
chomp;
my @data = unpack($fmt, $_);
Do something useful with the fields in @data

}

Notice that we add one to the length of each element to get the width. This is
because the marker character is not included in the array returned by the split, but it
should be included in the width of the field.

Fixed-width data 135
These are just two common ways to encode field structures in a fixed-width data
file. You will come across others, but it is always a case of working out the best way
to extract the required information from the metadata record. Of course, if you
have any influence in the design of your input file, you might like to suggest that
the first line contains the format that you need to pass to unpack—let your source
system do the hard work!

7.1.2 Writing fixed-width data

If you have to read fixed-width data there is, of course, a chance that eventually you
will need to write it. In this section we’ll look at some common ways to do this.

Writing fixed-width data using pack
Luckily, Perl has a function which is the opposite of unpack and, logically enough,
it is called pack. pack takes a template and a list of values and returns a string con-
taining the list packed according to the rules given by the template. Once again the
full power of pack will be useful when we look at binary data, but for ASCII data we
will just use the A and a template options. These options have slightly different
meanings in a pack template than the ones they have in an unpack template.
Table 7.1 summarizes these differences.

Therefore, if we have a number of strings and wish to pack them into a fixed-
width data record, we can do something like this:

my @strings = qw(Here are a number of strings);
my $template = 'A6A6A3A8A4A10';

print pack($template, @strings), "\n";

and our strings will all be space padded to the sizes given in the pack template.
There is, however, a problem padding numbers using this method, as Perl doesn’t
know the difference between text fields and numerical fields, so you end up with
numbers postpadded with spaces (or nulls, depending on the template you use).
This may, of course, be fine for your data, but if you want to prepad numbers with
spaces then you should use the sprintf or printf functions.

Table 7.1 Meanings of A and a in pack and unpack templates

A a

pack Pad string with spaces Pad string with null characters

unpack Strip trailing nulls and spaces Leave trailing nulls and spaces

136 CHAPTER

Fixed-width and binary data
Writing fixed-width data using printf and sprintf
These two functions do very similar things. The only difference is that sprintf
returns its results in a scalar variable, whereas printf will write them directly to a
file handle. Both of the functions take a format description followed by a list of val-
ues which are substituted into the format string. The contents of the format string
control how the values appear in the final result. At each place in the format string
where you want a value to be substituted you place a format specifier in the format
%m.nx, where m and n control the size of the field and x controls how the value
should be interpreted. Full details of the syntax for format specifiers can be found in
your Perl documentation but, for our current purposes, a small subset will suffice.

To put integers into the string, use the format specifier %d;2 to force the field to
be five characters wide, use the format specifier %5d; and to prepad the field with
zeroes, use %05d. Here is an example which demonstrates these options:

my @formats = qw(%d %5d %05d);

my $num = 123;

foreach (@formats) {
printf "¦$_¦\n", $num;

}

Running this code produces the following results:

¦123¦
¦ 123¦
¦00123¦

You can do similar things with floating point numbers using %f. In this case you can
control the total width of the field and also the number of characters after the deci-
mal point by using notation such as %6.2f (for a 6 character field with two charac-
ters after the decimal point). Here is an example of this:

my @formats = qw(%f %6.2f %06.2f);

my $num = 12.3;

foreach (@formats) {
printf "¦$_¦\n", $num;

}

which gives the following results (notice that the default number of decimal places
is six):

¦12.300000¦
¦ 12.30¦
¦012.30¦

2 %d is actually for a signed integer. If you need an unsigned value, use %u.

Fixed-width data 137
For strings we can use the format specifier %s. Again, we can use a number within
the specifier to define the size of the field. You’ll notice from the previous examples
that when the data was smaller than the field it was to be used in, the data was right
justified within the field. With numbers, that is generally what you want (especially
when you are going to prepad the number with zeroes) but, as we’ve seen previ-
ously, text is often left justified and postpadded with spaces. In order to left justify
the text we can prepend a minus sign to the size specifier. Here are some examples:

my @formats = qw(%s %10s %010s %-10s %-010s);

my $str = 'Text';

foreach (@formats) {
printf "¦$_¦\n", $str;

}

which gives the following output:

¦Text¦
¦ Text¦
¦000000Text¦
¦Text ¦
¦Text ¦

Notice that we can prepad strings with zeroes just as we can for numbers, but it’s
difficult to think of a situation where that would be useful.

Example: writing fixed-width data with sprintf
Putting this all together, we can produce code which can output fixed-width finan-
cial transaction records like the ones we were reading earlier.

my %rec1 = (txnref => 374,
cust => 'Bloggs & Co',
date => 19991105,
extref => 100103,
dir => '+',
amt => 15000);

my %rec2 = (txnref => 375,
cust => 'Smith Brothers',
date => 19991106,
extref => 1234,
dir => '-',
amt => 4999);

my @cols = (
{ name => 'txnref',
width => 5,
num => 1 },

{ name => 'cust',

138 CHAPTER

Fixed-width and binary data
width => 20,
num => 0 },

{ name => 'date',
width => 8,
num => 1 },

{ name => 'extref',
width => 6,
num => 1 },

{ name => 'dir',
width => 1,
num => 0 },

{ name => 'amt',
width => 8,
num => 1 });

my $format = build_fmt(\@cols);

print fixed_rec(\%rec1, \@cols, $format);
print fixed_rec(\%rec2, \@cols, $format);

sub build_fmt {

my $cols = shift;
my $fmt;

foreach (@$cols) {

if ($_->{num}) {
$fmt .= "%0$_->{width}s";

} else {
$fmt .= "%-$_->{width}s";

}
}

return $fmt;
}

sub fixed_rec {

my ($rec, $cols, $fmt) = @_;

my @vals = map { $rec->{$_->{name}} } @$cols;

sprintf("$fmt\n", @vals);
}

In this program, we use an array of hashes (@cols) to define the characteristics of
each data field in our record. These characteristics include the name of the column
together with the width that we want it to be in the output, and a flag indicating
whether or not it is a numeric field. We then use the data in this array to build a
suitable sprintf format string in the function build_fmt. The fixed_rec func-
tion then extracts the relevant data from the record (which is stored in a hash) into

Binary data 139
an array and feeds that array to sprintf along with the format. This creates our
fixed-width record. As expected, the results of running this program are the records
that we started with at the beginning of this chapter.

7.2 Binary data

All of the data that we have looked at so far has been ASCII data. That is, it has been
encoded using a system laid down by the American Standards Committee for Infor-
mation Interchange. In this code, 128 characters3 have been given a numerical
equivalent value from 0 to 127. For example, the space character is number 32, the
digits 0 to 9 have the numbers 48 to 57, and the letters of the alphabet appear from
65 to 90 in upper case and from 97 to 122 in lower case. Other numbers are taken
up by punctuation marks and various control characters.

When an ASCII character is written to a file, what is actually written is the binary
version of the ASCII code for the given character. For example the number 123
would be written to the file as 00110001 00110010 00110011 (the binary equiva-
lents of 49, 50, and 51). The advantage of this type of data is that it is very easy to
write software that allows users to make sense of the data. All you need to do is con-
vert each byte of data into its equivalent ASCII character. The major disadvantage is
the amount of space used. In the previous example we used 3 bytes of data to store
a number, but if we had stored the binary number 01111011 (the binary equivalent
of 123) we could have used a third of the space.

For this reason, there are a number of applications which store data in binary for-
mat. In many cases these are proprietary binary formats which are kept secret so
that one company has a competitive advantage over another. A good example of
this is spreadsheets. Microsoft and Lotus have their own spreadsheet file format
and, although Lotus 123 can read Microsoft Excel files, each time a new feature is
added to Excel, Lotus has to do more work to ensure that its Excel file converter
can handle the new feature. Other binary file formats are in the public domain and
can therefore be used easily by applications from many different sources. Probably
the best example of this is in graphics files, where any number of applications across
many different platforms can happily read and write each other’s files.

We’ll start by writing a script that can extract useful data from a graphics file. The
most ubiquitous graphics file format (especially across the Internet) is the CompuServe
Graphics Interchange Format (or GIF). Unfortunately for us, this file format uses a pat-
ented data compression technique and the owners of the patent (Unisys) are trying to

3 There are a number of extensions to the ASCII character set which define 256 characters, but the fact that
they are nonstandard can make dealing with them problematic.

140 CHAPTER

Fixed-width and binary data
ensure that only properly licensed software is used to create GIF files.4 As Perl is Open
Source, it does not fall into this category, and you shouldn’t use it to create GIFs. I
believe that using Perl to read GIFs would not violate the licensing terms, but to be
sure we’ll look at the Portable Network Graphics (PNG) format instead.

7.2.1 Reading PNG files

In order to read any binary file, you will need a definition of the format. I’m using
the definition in Programming Web Graphics with Perl & GNU Software by Shawn
P. Wallace (O’Reilly), but you can get the definitive version from the PNG group
home page at http://www.cdrom.com/pub/png/.

Reading the file format signature
Most binary files start with a signature, that is a few bytes that identify the format of
the file. This is so that applications that are reading the file can easily check that the
file is in a format that they can understand. In the case of PNG files, the first 8 bytes
always contain the hex value 0x89 followed by the string PNG\cM\cJ\cZ\cM. In
order to check that a file is a valid PNG file, you should do something like this:

my data;

read(PNG, $data, 8);

die "Not a valid PNG\n" unless $data eq '\x89PNG\cM\cJ\cZ\cM';

Note that we use \x89 to match the hex number 0x89 and \cZ to match Control-Z.

Reading the data chunks
After this header sequence, a PNG file is made up of a number of chunks. Each
chunk contains an 8-byte header, some amount of data, and a 4-byte trailer. Each
header record contains the length in a 4-byte integer followed by four characters
indicating the type of the chunk. The length field gives you the number of bytes
that you should read from the file and the type tells you how to process it. There are
a number of different chunk types in the PNG specification, but we will look only at
the IHDR (header) chunk, which is always the first chunk in the file and defines cer-
tain global attributes of the image.

Example: reading a PNG file
A complete program to extract this data from a PNG file (passed in via STDIN) looks
like this:

4 You can read more about this dispute in Lincoln Stein’s excellent article at:
http://www.webtechniques.com/archives/1999/12/webm/.

Binary data 141
binmode STDIN;
my $data;

read(STDIN, $data, 8);
die "Not a PNG file" unless $data eq "\x89PNG\cM\cJ\cZ\cM";

while (read(STDIN, $data, 8)) {
my ($size, $type) = unpack('Na4', $data);
print "$type ($size bytes)\n";
read(STDIN, $data, $size);

if ($type eq 'IHDR') {
my ($w, $h, $bitdepth, $coltype, $comptype, $filtype, $interlscheme) =

unpack('NNCCCCC', $data);
print << "END";

Width: $w, Height: $h
Bit Depth: $bitdepth, Color Type: $coltype
Compression Type: $comptype, Filtering Type: $filtype
Interlace Scheme: $interlscheme

END
}
read(STDIN, $data, 4);

}

The first thing to do when dealing with binary data is to put the file handle that you
will be reading into binary mode by calling binmode on it. This is necessary on
operating systems which differentiate between binary and text files (these include
DOS and Windows). On these operating systems, a \cM\cJ end-of-line marker in a
text file gets translated to \n as it is read in. If this sequence appears in a binary file,
it needs to be left untouched. Operating systems, such as UNIX, don’t make this
binary/text differentiation, so under them binmode has no effect. For reasons of
portability it is advisable to always call this function.

Having called binmode, we can then start reading our binary data. As we saw
before, the first thing that we do is to read the first 8 bytes and check them
against the signature for PNG files. If it matches we continue, otherwise we termi-
nate the program.

We then go into a while loop, reading the header of each chunk in the file. We
read 8 bytes of raw data and convert it into something easier to understand using
unpack. Notice that we use N to extract the 4-byte integer and a4 to extract the
4-character string. The full set of options that you can use in an unpack format
string is given in the documentation that came with your Perl distribution. It is in
the perlfunc manual page (and notice that the full set of options is listed under
the pack function). Having established the type of the chunk and the amount of
data that it contains, we can read in that amount of data from the file. In our pro-
gram we also display the information to the user.

142 CHAPTER

Fixed-width and binary data
The type of the chunk determines how we process the data we have read. In our
case, we are only dealing with the IHDR chunk, and that is defined as two 4-byte
integers followed by five single-character strings. We can, therefore, split the data
apart using the unpack format NNCCCCC. The definition of these fields is in the PNG
documentation but there is a précis in table 7.2.

Having unpacked this data into more useable chunks we can display it. It may be
more useful to translate some of the numbers to descriptive strings, but we won’t
do that in this example.

After reading and processing the chunk data, we need only to read in the 4 bytes
which make up the chunk footer. This value can be used as a checksum against the
data in the chunk to ensure that it has not been corrupted. In this simple example
we will throw it away.

Our program then goes on to read all of the other chunks in turn. It doesn’t
process them, it simply displays the type and size of each chunk it finds. A more
complex program would need to read the PNG specification and work out how to
process each type of chunk.

Table 7.2 Elements of a PNG IHDR chunk

Field Type Description

Width 4-byte integer The width of the image in pixels

Height 4-byte integer The height of the image in pixels

Bit Depth 1-byte character The number of bits used to represent the color of each pixel

Color Type 1-byte character Code indicating how colors are encoded within the image.
Valid values are:

0: A number from 0–255 indicating the greyscale value
2: Three numbers from 0–255 indicating the amount of red,

green, and blue
3: A number which is an index into a color table
4: A greyscale value (0–255) followed by an alpha mask
6: An RGB triplet (as is 2, above) followed by an alpha mask

Compression Type 1-byte character The type of compression used (always 0 in PNG version 1.0)

Filtering Type 1-byte character The type of filtering applied to the data (always 0 in PNG ver-
sion 1.0)

Interlacing Scheme 1-byte character The interlacing scheme used to store the data. For PNG ver-
sion 1.0 this is either 0 (for no interlacing) or 1 (for Adam7
interlacing)

Binary data 143
Testing the PNG file reader
To test this program I created a simple PNG file that was 100 pixels by 50 pixels,
containing some simple text on a white background. As the program expects to
read the PNG file from STDIN, I ran the program like this:

read_png.pl < test.png

and the output I got looked like this:

IHDR (13 bytes)
Width: 100, Height: 50
Bit Depth: 8, Color Type: 2
Compression Type: 0, Filtering Type: 0
Interlace Scheme: 0

tEXt (21 bytes)
tIME (7 bytes)
pHYs (9 bytes)
IDAT (1135 bytes)
IEND (0 bytes)

From this we can see that my file was, indeed, 100 pixels by 50 pixels. There were 8
bits per pixel and they were in RGB triplets. No compression, filtering, or interlac-
ing was used. After the IHDR chunk, you can see various other chunks. The impor-
tant one is the IDAT chunk which contains the actual image data.

CPAN modules
There are, of course, easier ways to get to this information than by writing your own
program. In particular, Gisle Aas has written a module called Image::Info which is
available from the CPAN. Currently (version 0.04) the module supports PNG, JPG,
TIFF, and GIF file formats, and no doubt more will follow. Reading the source code
for this module will give you more useful insights into reading binary files using Perl.

7.2.2 Reading and writing MP3 files

Another binary file format that has been getting a lot of publicity recently is the
MP35 file. These files store near-CD quality sound in typically a third of the space
required by raw CD data. This has led to a whole new drain on Internet bandwidth
as people upload their favorite tracks to their web sites.

We won’t look at reading or writing the actual audio data in an MP3 file (encod-
ing audio data is a large enough field to deserve several books of description), but
we will look at the ID3 data which is stored at the end of an MP3 file. The ID3 tags
allow you to store useful information about the sounds contained in the file within

5 Short for MPEG3 or Motion Pictures Experts Group—Audio Level 3.

144 CHAPTER

Fixed-width and binary data
the file itself. This includes obvious fields such as the artist, album, track name, and
year of release, together with more obscure data like the genre of the track and the
copyright and distribution information.

Chris Nandor has written a module which allows you to read and write these
data fields. The module is called MPEG::MP3Info and it is available from the CPAN.
Using the module is very simple. Here is a sample program which displays all of the
ID3 data that it can find in a given MP3 file:

use MPEG::MP3Info;

my $file = shift;

my $tag = get_mp3tag($file);
my $info = get_mp3info($file);

print "Filename: $file\n";
print "MP3 Tags\n";
foreach (sort keys %$tag) {

print "$_ : $tag->{$_}\n";
}

print "MP3 Info\n";
foreach (sort keys %$info) {

print "$_ : $info->{$_}\n";
}

Notice that there are two separate parts of the ID3 data. The data returned in $tag
is the data about the sound contained in the file—like track name, artist, and year of
release. The data returned in $info tend to be more physical data about the actual
data in the file—the bit-rate, frequency, and whether the recording is stereo or
mono. For this reason, the module currently (and I’m looking at version 0.71) con-
tains a set_mp3tag function, but not a set_mp3info function. It is likely that
you’ll have good reasons to change the ID3 tags which defined the track and artist,
but less likely that you’ll ever need to change the physical recording parameters.
There is also a remove_mp3tag function which removes the ID3 data from the end
of the file.

As with Image::Info which we discussed earlier, it is very instructive to read the
code of this module as it will give you many useful ideas on the best way to read and
write your binary data.

7.3 Further information

This chapter has discussed a number of built-in Perl functions. These include pack,
unpack, read, printf, and sprintf. For more information about any built-in
Perl function see the perldoc perlfunc manual page. The list of type specifiers

Summary 145
supported by sprintf and printf is system-dependent, so you can get this infor-
mation from your system documentation.

The Image::Info and MPEG::MP3Info modules are both available from the
CPAN. Having installed them, you will be able to read their full documentation by
typing perldoc Image::Info or perldoc MPEG::MP3Info at your command line.

7.4 Summary

■ The easiest way to split apart a fixed-width data record is by using the unpack
function.

■ Conversely, the easiest way to create a fixed-width data record is by using the
pack function.

■ If your data doesn’t have distinct end-of-record markers, you can read a cer-
tain number of bytes from your input data stream using the read function.

■ Once you have used the binmode function on a binary data stream it can be
processed using exactly the same techniques as a text data stream.

Part III

Simple data parsing

As this part of the tale commences, our heroes begin to realize
that there are very good reasons for the beast to appear in more com-
plex forms, and they see that their current techniques will be of limited
use against these new forms. They begin to discuss more powerful tech-
niques to attack them.

The beast then appears in a new, hierarchical format. Luckily, our
heroes find a source of ready-made tools for defeating this form.

The beast appears once again in a more complex (and yet, in some
ways, simplified) guise and our heroes once more find ready-built tools
for defeating this form.

At the end of this part of the tale, our heroes develop techniques
which let them build their own tools to tackle the beast whenever it
appears in forms of arbitrary complexity.

8Complex data formats
What this chapter covers:
■ Using and processing more complex

data formats
■ Limitations in data parsing
■ What are parsers and why should I

use them?
■ Parsers in Perl
149

150 CHAPTER

Complex data formats
We have now completed our survey of the simple data formats that you will come
across. There is, however, a whole class of more complex data formats that you will
inevitably be called upon to munge at some point. The increased flexibility that
these formats give us for data storage comes at a price, as they will take more time
to process. In this chapter we take a look at these types of data, how you discern
when to use them, and how you go about processing them.

8.1 Complex data files

A lot of the data that we have seen up to now has used one line to represent each
record in the data set. There have been exceptions; some of the records that we saw
in chapter 6 used more than one row for each record, and most of the binary data
that we discussed in chapter 7 had no record-based structure at all. Even going back
to the very first chapter, the first sample CD data set that we saw consisted largely of
a record-based middle section, but it also has header and footer records which
would have made processing it slightly more complex.

8.1.1 Example: metadata in the CD file

Let’s take another look at that first sample data file.

Dave's CD Collection
16 Sep 1999

Artist Title Label Released
--
Bragg, Billy Workers' Playtime Cooking Vinyl 1987
Bragg, Billy Mermaid Avenue EMI 1998
Black, Mary The Holy Ground Grapevine 1993
Black, Mary Circus Grapevine 1996
Bowie, David Hunky Dory RCA 1971
Bowie, David Earthling EMI 1987

6 Records

As you can see, the data consists of three clearly delimited sections. The main body
of the file contains the meat of the report—a list of the CDs in my record collection,
giving information on artist, title, recording label, and year of release. However, the
header and footer records also contain important data.

The header contains information about the data file as a whole, telling us whose CD
collection it is and the date on which this snapshot is valid. It would be inappropriate to
list this information for each record in the file, so the header is a good place to put it.1

1 There are other places where the information could be stored. One common solution is to store this kind
of information in the name of the data file, so that a file containing this data might be called something
like 19990916_dave.txt.

Complex data files 151
The information in the footer is a little different. In this case we are describing
the actual shape of the data rather than where (or when) it comes from. At first
glance it might seem that this information is unnecessary, as we can find out the
number of records in the file simply by counting them as we process them. The rea-
son that it is useful for the file to contain an indication of the number of records is
that it acts as a simple check that the file has not been corrupted between the time it
was created and the time we received it. By simply comparing the number of
records that we processed against the number that the file claims to contain, we can
easily tell if any went missing in transmission.2

This then demonstrates one important reason for having more complex data files.
They allow us to include metadata—data about the data we are dealing with.

Adding subrecords
Another good reason for using more complex formats is that you are dealing with
data that doesn’t actually fit very well into a simpler format. Staying with the CD
example, perhaps your data file needs to contain details of the tracks on the CDs as
well as the data that we already list. At this point our line-per-record approach falls
down and we are forced to look at something more complicated. Perhaps we will
indent track records with a tab character or prefix the track records with a + charac-
ter. This would give us a file that looked something like this (listing only the first
two tracks):

Dave's CD Collection
16 Sep 1999

Artist Title Label Released
--
Bragg, Billy Workers' Playtime Cooking Vinyl 1988
+She's Got A New Spell
+Must I Paint You A Picture
Bragg, Billy Mermaid Avenue EMI 1998
+Walt Whitman's Niece
+California Stars
Black, Mary The Holy Ground Grapevine 1993
+Summer Sent You
+Flesh And Blood
Black, Mary Circus Grapevine 1995
+The Circus
+In A Dream
Bowie, David Hunky Dory RCA 1971
+Changes

2 As with the header information, including this data within the file isn’t the only way to do it. Another com-
mon method is to send a second file with a similar name that contains the number of records. In the exam-
ple of my CDs, we might have another file called 19990916_dave.rec which contains only the number 6.

152 CHAPTER

Complex data formats
+Oh You Pretty Things
Bowie, David Earthling EMI 1997
+Little Wonder
+Looking For Satellites

6 Records

8.1.2 Example: reading the expanded CD file

This file is more complicated to process than just about any other that we have seen.
Here is one potential way to read the data into a data structure.

1: my %data;
2:
3: chomp($data{title} = <STDIN>);
4: chomp($data{date} = <STDIN>);
5: <STDIN>;
6: my ($labels, @labels);
7: chomp($labels = <STDIN>);
8: @labels = split(/\s+/, $labels);
9: <STDIN>;

10:
11: my $template = 'A14 A19 A15 A8';
12:
13: my %rec;
14: while (<STDIN>) {
15: chomp;
16:
17: last if /^\s*$/;
18:
19: if (/^\+/) {
20: push @{$rec{tracks}}, substr($_, 1);
21: } else {
22: push @{$data{CDs}}, {%rec} if keys %rec;
23: %rec = ();
24: @rec{@labels} = unpack($template, $_);
25: }
26: }
27:
28: push @{$data{CDs}}, {%rec} if keys %rec;
29:
30: ($data{count}) = (<STDIN> =~ /(\d+)/);
31:
32: if ($data{count} == @{$data{CDs}}) {
33: print "$data{count} records processed successfully\n";
34: } else {
35: warn "Expected $data{count} records but received ",
36: scalar @{$data{CDs}}, "\n";
37: }

Complex data files 153
This code is not the best way to achieve this. We’ll see a far better way when we
examine the module Parse::RecDescent in chapter 11, but in the meantime let’s
take a look at the code in more detail to see where it’s a bit kludgy.

Line 1 defines a hash where we will store the data that we read in.
Lines 3 and 4 read in the first two lines of data and store them in $data{title}

and $data{date}, respectively.
Line 5 ignores the next line in the file (which is blank).
Lines 6 to 8 get the list of labels from the header line in the file and create an

array containing the labels.
Line 9 ignores the next line in the file (which is the line of dashes).
Line 11 creates a template for extracting the data from the CD lines using

unpack. Note that it would have been possible to create this template automatically
by calculating the lengths of the fields from the header line.

Line 13 defines a hash that will store the details of each CD as we read it in.
Line 14 starts a while loop which will read in all of the CD data a line at a time.
Line 15 removes the end-of-line character from data record.
Line 17 terminates the loop when a blank line is found. This is because there is a

blank line between the CD records and the footer data.
Line 19 checks to see if we have a CD record or a track record by examining the

first character of the data. If it is a + then we have a track record, otherwise we
assume we have a CD record.

Line 20 deals with the track record by removing the leading + and pushing the
remaining data onto a list of tracks on our current CD.

Line 22 starts to deal with a new CD. First we need to push the previous CD
record onto our list of CDs (which is stored in $data{CDs}). Notice that we also
get to this line of code at the start of the first CD record. In this case there is no pre-
vious CD record to store. We take care of this by only storing the record if it con-
tains data. Notice also that as we reuse the same %rec variable for each CD, we
make an anonymous copy of it each time.

Line 23 resets the %rec hash to be empty, and line 24 gets the data about the
new CD using unpack.

Having found the blank line at the end of the data section, we exit from the
while loop at line 26. At this point the final CD is still stored in $rec, but hasn’t
been added to $data{CDs}. We put that right on line 28.

Line 30 grabs the number of records from the footer line in the file and then, as a
sanity check, we compare that number with the number of records that we have
processed and stored in $data{CDs}.

Figure 8.1 shows the data structure that we store the album details in.

154 CHAPTER

Complex data formats
As you can see, while this approach gets the job done, it is far from elegant. A bet-
ter way to achieve this would be using a real parser. We will take a look at simple pars-
ers later in this chapter, but first let’s look at more limitations of our current methods.

8.2 How not to parse HTML

HTML and its more flexible sibling XML have become two of the most common
data formats over recent years, and there is every reason to believe that they will
continue to grow in popularity in the future. They are so popular, in fact, that the
next two chapters are dedicated to ways of dealing with them using dedicated mod-
ules such as HTML::Parser and XML::Parser. In this section, however, I’d like to
give you some idea of why these modules are necessary by pointing out the limita-
tions in the data parsing methods that we have been using up to now.

8.2.1 Removing tags from HTML

A common requirement when processing HTML is to remove the HTML tags from
the input, leaving only the plain text. We will, therefore, use this as our example.
Let’s take a simple piece of HTML and examine how we might remove the tags.
Here is the sample HTML that we will use:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<title>Sample HTML</title>

</head>

<body>
<h1>Sample HTML</h1>

0

1
2

3

4

5

hashref

hashref
hashref

hashref

hashref

hashref

artist

title

label

Billy Bragg

Workers' Playtime

Cooking Vinyl

released

tracks

1988

arrayref

title

date

CDs

Dave's CD collection

16 Sep 1999

arrayref

count 6

0

1

She's Got A New Spell

Must I Paint You A Picture

Figure 8.1 Data structure modeling the complex CD data file

How not to parse HTML 155
<p>This is a sample piece of HTML.</p>

It
Has
A
List

<p>And links to the Previous and
Next pages.</p>

</body>
</html>

Example: a first attempt
Here is a first attempt to write code that removes all of the HTML tags. I should
reiterate here that all of this code is here to demonstrate the wrong way to do it, so
you shouldn’t be using this code in your programs.

WARNING: This code doesn't work
use strict;

while (<STDIN>) {
s/<.*>//;
print;

}

Nothing too difficult there. Just read in the file a line at a time and remove every-
thing that is between an opening < and a closing >. Let’s see what output we get
when we run that against our sample file.

and

156 CHAPTER

Complex data formats
That’s probably not quite what we were hoping for. So what has gone wrong? In
this case we have made a simple beginner’s mistake. By default, Perl regular expres-
sions are greedy. That is, they consume as much of the string as possible. What this
means is that where we have a line like:

<h1>Sample HTML</h1>

our regular expression will consume all the data between the first < and the last >,
effectively removing the whole line.

Example: another attempt using nongreedy regular expressions
We can, of course, correct this by making our regular expression nongreedy. We do
this by placing a ? after the greedy part of the regular expression (.*), meaning our
code will now look like this:

WARNING: This code doesn't work either
use strict;

while (<STDIN>) {
s/<.*?>//;
print;

}

and our output looks like this:

Sample HTML</title>

Sample HTML</h1>

This is a sample piece of HTML.</p>

It
Has
A
List

And links to the Previous and
Next pages.</p>

Example: adding the g modifier
The preceding output is obviously an improvement, but instead of removing too
much data we are now removing too little. We are removing only the first tag that
appears on each line. We can correct this by adding the g modifier to our text
replacement operator so that the code looks like this:

WARNING: This code works, but only on very simple HTML
use strict;

How not to parse HTML 157
while (<STDIN>) {
s/<.*?>//g;
print;

}

And the output will look like this:

Sample HTML

Sample HTML

This is a sample piece of HTML.

It
Has
A
List

And links to the Previous and
Next pages.

That does look a lot better.

8.2.2 Limitations of regular expressions

At this point you might be tempted to think that I was exaggerating when I said
that HTML parsing was difficult as we seem to have achieved it in four lines of Perl.
The problem is that while we have successfully parsed this particular piece of
HTML, we are still a long way from dealing with the problem in general. The
HTML we have dealt with is very simple and almost certainly any real world HTML
will be far more complex.

The first assumption that we have made about HTML is that all tags start and fin-
ish on the same line. You only need to look at a few web pages to see how optimis-
tic that is. Many HTML tags have a number of attributes and can be spread out over
a number of lines. Take this tag for example:

<img src="http://www.mag-sol.com/images/logo.gif"
height="25" width="100"
alt="Magnum Solutions Ltd.">

Currently our program will leave this tag untouched. There are, of course, ways
around this. We could read the whole HTML file into a single scalar variable and
run our text replacement on that variable.3 The downside of this approach is that,

3 We would have to add the s modifier to the operator, to get the . to match newline characters.

158 CHAPTER

Complex data formats
while it is not a problem for a small file like our example, there may be good reasons
for not reading a larger document into memory all at once.

We have seen a number of reasons why our approach to parsing HTML is flawed.
We can provide workarounds for all of the problems we have come across so far, but
the next problem is a little more serious. Basically, our current methods don’t
understand the structure of an HTML document and don’t know that different
rules apply at different times. Take a look at the following piece of valid HTML:

<img src="/images/prev.gif" alt="<-">
">

In this example, the web page has graphics that link to the previous and next pages.
In case the user has a text-only browser or has images switched off, the author has
provided alt attributes which can be displayed instead of the images. Unfortu-
nately, in the process he has completely broken our basic HTML parsing routine.
The > symbol in the second alt attribute will be interpreted by our code as the end
of the img tag. Our code doesn’t know that it should ignore > symbols if they
appear in quotes. Building regular expressions to deal with this is possible, but it
will make your code much more complex and just when you’ve added that you’ll
find another complication that you’ll need to deal with.

The point is that while you can solve all of these problems, there are always new
problems around the corner and there comes a point when you have to stop look-
ing for new problems to address and put the code into use. If you can be sure of the
format of your HTML, you can write code which processes the subset of HTML that
you know you will be dealing with, but the only way to deal with all HTML is to use
an HTML parser. We’ll see a lot more about parsing HTML (and also XML) in the
following chapters.

8.3 Parsers

We’ve seen in the previous section that for certain types of data, our usual regular
expression-based approach is not guaranteed to work. We must therefore find a new
approach. This will involve the use of parlance.

8.3.1 An introduction to parsers

As I have hinted throughout this chapter, the solution to all of these problems is to
use a parser. A parser is a piece of software that takes a piece of input data and looks
for recognizable patterns within it. This is, of course, what all of our parsing rou-
tines have been doing, but we are now looking at a far more mathematically rigor-
ous way of splitting up our input data.

Parsers 159
Before I go into the details of parsing, I should point out that this is a very com-
plex field and there is a lot of very specific jargon which I cannot address here in
detail. If you find your interest piqued by this high-level summary you might want
to look at the books recommended at the end of this chapter.

An introduction to parsing jargon
I said that parsers look for recognizable patterns in the input data. The first ques-
tion, therefore, should be: how do parsers know what patterns to recognize? Any
parser works on a grammar that defines the allowable words in the input data and
their allowed relationships with each other. Although I say words, obviously in the
kinds of data that we are dealing with these words can, in fact, be any string of char-
acters. In parsing parlance they are more accurately known as tokens.

The grammar therefore defines the tokens that the input data should contain and
how they should be related. It does this by defining a number of rules. A rule has a
name and a definition. The definition contains the list of items that can be used to
match the rule. These items can either be subrules or a definition of the actual text
that makes up the token. This may all become a bit clearer if we look at a simple
grammar. Figure 8.2 shows a grammar which defines a particular type of simple
English sentence.

This grammar says that a sentence is made up of a subject followed by a verb and
an object. The verb is a terminal (in capital letters) which means that no further
definition is required. Both the subject and the object are noun phrases and a noun
phrase is defined as either a pronoun, a proper noun, or an article followed by a
noun. In the last rule, pronouns, proper nouns, articles, and nouns are all terminals.
Notice that the vertical bars in the definition of a noun_phrase indicate alterna-
tives, i.e., a noun phrase rule can be matched by one of three different forms. Each
of these alternatives is called a production.

Matching the grammar against input data
Having defined the grammar, the parser now has to match the input data against
the grammar. First it will break up the input text into tokens. A separate process

sentence ->
subject -> noun_phrase
object -> noun_phrase
noun_phrase -> PRONOUN

PROPER_NOUN
ARTICLE NOUN

|
|

subject VERB object

Figure 8.2 Simple grammar

Rule name

Terminal
Production

Alternative
productions

160 CHAPTER

Complex data formats
called a lexer often does this. The parser then examines the stream of tokens and
compares it with the grammar. There are two different ways that a parser will
attempt this.

Bottom-up parsers
An LR (scan left, expand rightmost subrule) parser will work like a finite state
machine. Starting in a valid start state, the parser will compare the next token with
the grammar to see if it matches a possible successor state. If so, it moves to the suc-
cessor state and starts the process again. Figure 8.3 shows how this process works
for our simple grammar. The parser begins at the Start node and takes the first
token from the input stream. The parser is allowed to move to any successor state
which is linked to its current state by an arrow (but only in the direction of the
arrow). If the parser gets to the end of the stream of tokens and is at the Finish
node, then the parse was successful; otherwise the parse has failed. If at any point
the parser finds a token which does not match the successor states of its current
state, then the parse also fails.

At any point, if the finite state machine cannot find a matching successor state, it
will go back a state and try an alternative route. If it gets to the end of the input
data and finds itself in a valid end state, then the parse has succeeded; if not it has
failed. This type of parser is also known as a bottom-up parser.

ARTICLE
PROPER
_NOUN

NOUN

PRONOUN ARTICLE

NOUN

PROPER
_NOUN

Start

Finish

PRONOUN

VERB

Figure 8.3 LR Parser

Parsers 161
Top-down parsers
An LL (scan left, expand leftmost subrule) parser will start by trying to match the
highest level rule first (the sentence rule in our example). To do that, it needs to
match the subrules within the top-level rule, so it would start to match the subject
rule and so on down the grammar. Once it has matched all of the terminals in a rule,
it knows that has matched that rule. Figure 8.4 shows the route that an LL parser
would take when trying to match an input stream against out sample grammar.

Matching all of the subrules in a production means that it has matched the pro-
duction and, therefore, the rule that the production is part of. If the parser matches
all of the subrules and terminals in one of the productions of the top-level rule,
then the parse has succeeded. If the parser runs out of productions to try before
matching the top-level rule, then the parse has failed. For obvious reasons, this type
of parser is also known as a top-down parser.

8.3.2 Parsers in Perl

Parsers in Perl come in two types: prebuilt parsers such as HTML::Parser and
XML::Parser, which are designed to parse a particular type of data, and modules

PRONOUN

sentence

sequence of

subject object

noun_phrase

one of

VERB

PROPER
_NOUN

ARTICLE NOUN

sequence of

Figure 8.4 LL Parser

162 CHAPTER

Complex data formats
such as Parse::Yapp and Parse::RecDescent which allow you to create your
own parsers from a grammar which you have defined.

In the next two chapters we will take a longer look at the HTML::Parser and XML::
Parser families of modules; and in chapter 11 we will examine Parse::RecDescent,
in detail, which is the most flexible tool for creating your own parsers in Perl.

8.4 Further information

More information about parsing HTML can be found in the next chapter of this book.
For additional information about parsing in general: Compilers: Principles, Tech-

niques and Tools (a.k.a. “The Dragon Book”) by Aho, Sethi, and Ullman (Addison-
Wesley) is the definitive guide to the field; The Art of Compiler Design by Pittman
and Peters (Prentice Hall) is, however, a far gentler introduction.

8.5 Summary

■ There are often very good reasons for having data that is not strictly in a
record-based format. These reasons can include:
■ Including metadata about the data file.
■ Including subsidiary records.

■ When parsing hierarchical data such as HTML our usual regular expression-based
approach can break down and we need to look for more powerful techniques.

■ Parsers work by examining a string of tokens to see if they match the rules
defined in a grammar.

■ Parsers can either be bottom-up (scan left, expand rightmost subrule) or top-
down (scan left, expand leftmost subrule).

9HTML
What this chapter covers:
■ Getting data from the Internet
■ Parsing HTML
■ Prebuilt HTML parsers
■ Getting a weather forecast
163

164 CHAPTER

HTML
Since the explosion in interest in the World Wide Web in the 1990s, HTML has
become one of the most popular file formats that we can use for the purpose of
extracting data. At the end of the 1990s it seemed more and more likely that HTML
would be overtaken in terms of popularity by its younger cousin, XML.

In this chapter we will look at HTML and see how to extract the data that we
need from HTML documents.

9.1 Extracting HTML data from the World Wide Web

Perl has a set of modules which can be used to read data from the World Wide Web.
This set of modules is called LWP (for Library for WWW Programming in Perl) and
you can find it on the CPAN under the name libwww.1 LWP contains modules for
gleaning data from the WWW under a large number of conditions. Here we will
look at only the simplest module that it contains. If these methods don’t work for
you then you should take a close look at the documentation that comes with LWP.

The simplest method to use when pulling data down from the web is the
LWP::Simple module. This module exports a number of functions which can send
an HTTP request and handle the response. The simplest of these is the get func-
tion. This function takes a URL as an argument and returns the data that is returned
when that URL is requested. For example:

use LWP::Simple;

my $page = get('http://www.mag-sol.com/index.html');

will put the contents of the requested page into the variable $page. If there is an
error, then get will return undef.

Two of the most common steps that you will want to take with the data returned
will be to print it out or to store it in a file. LWP::Simple has functions that carry
out both of these options with a single call:

getprint('http://www.mag-sol.com/index.html');

will print the page directly to STDOUT and

getstore('http://www.mag-sol.com/index.html', 'index.html');

will store the data in the (local) file index.html.

1 If, however, you are using ActiveState’s ActivePerl for Windows, you’ll find that LWP is part of the stan-
dard installation.

Parsing HTML 165
9.2 Parsing HTML

Parsing HTML in Perl is all based around the HTML::Parser CPAN module.2 This
module takes either an HTML file or a chunk of HTML in a variable and splits it into
individual tokens. To use HTML::Parser we need to define a number of handler
subroutines which are called by the parser whenever it encounters certain construc-
tions in the document being parsed.

The HTML that you want to parse can be passed to the parser in a couple of
ways. If you have it in a file you can use the parse_file method, and if you have it
in a variable you can use the parse method.

9.2.1 Example: simple HTML parsing

Here is a very simple HTML parser that displays all of the HTML tags and attributes
it finds in an HTML page.

use HTML::Parser;
use LWP::Simple;

sub start {
my ($tag, $attr, $attrseq) = @_;

print "Found $tag\n";
foreach (@$attrseq) {

print " [$_ -> $attr->{$_}]\n";
}

}

my $h = HTML::Parser->new(start_h => [\&start, 'tagname,attr,attrseq']);

my $page = get(shift);
$h->parse($page);

In this example, we define one handler, which is called whenever the parser encoun-
ters the start of an HTML tag. The subroutine start is defined as being a handler
as part of the HTML::Parser->new call. Notice that we pass new a hash of values.
The keys to the hash are the names of the handlers and the values are references to
arrays that define the associated subroutines. The first element of the referenced
array is a reference to the handler subroutine and the second element is a string that
defines the parameters that the subroutine expects. In this case we require the name
of the tag, a hash of the tag’s attributes, and an array which contains the sequence

2 Note that what I am describing here is HTML::Parser version 3. In this version, the module was rewritten
so that it was implemented in C for increased performance. The interface was also changed. Unfortunately,
the version available for ActivePerl on Win32 platforms still seems to be the older, pure Perl version, which
doesn’t support the new interface.

166 CHAPTER

HTML
in which the attributes were originally defined. All parameters are passed to the han-
dler as scalars. This means that the attribute hash and the attribute sequence array
are actually passed as references.

In the start subroutine, we simply print out the type of the HTML element that
we have found, together with a list of its attributes. We use the @$attrseq array to
display the attributes following the same order in which they were defined in the
original HTML. Had we relied on keys %$attr, we couldn’t have guaranteed the
attributes appearing in any particular order.

Testing the simple HTML parser
In order to test this, here is a simple HTML file:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head><title>Test HTML Page</title></head>
<body bgcolor="#FFDDDD">
<h1 ALIGN=center>test HTML Page</h1>
<p>This is the first paragraph</p>
<p>This is the 2nd paragraph</p>
<p>Here is a list</p>
Item one
Item two
</body>
</html>

and here is the output we get from running it through our parser:

Found html
Found head
Found title
Found body
[bgcolor -> #FFDDDD]

Found h1
[align -> center]

Found p
Found p
Found font
[color -> #0000FF]

Found p
Found ol
Found li
Found li

Each time the parser finds an HTML element, it calls start, which displays infor-
mation about the element and its attributes. Notice that none of the actual text of
the document appears in our output. For that to happen we would need to define
a text handler. You would do that by declaring a text_h key/value pair in the

Prebuilt HTML parsers 167
call to HTML::Parser->new. You would define the handler in the same way, but in
this case you might choose a different set of parameters. Depending on what your
script was doing, you would probably choose the text or dtext parameters. Both
of these parameters give you the text found, but in the dtext version any HTML
entities are decoded.

You can see how easy it is to build up a good idea of the structure of the docu-
ment. If you wanted a better picture of the structure of the document, you could
also define an end handler and display information about closing tags as well. One
option might be to keep a global variable, which was incremented each time a start
tag was found, and decremented each time a close tag was found. You could then
use this value to indent the data displayed according to how deeply nested the
element was.

9.3 Prebuilt HTML parsers

HTML::Parser gives you a great deal of flexibility to parse HTML files in any way
that you want. There are, however, a number of tasks that are common enough that
someone has already written an HTML::Parser subclass to carry them out.

9.3.1 HTML::LinkExtor

One of the most popular is HTML::LinkExtor which is used to produce a list of all
of the links in an HTML document. There are two ways to use this module. The
simpler way is to parse the document and then run the links function, which
returns an array of the links found. Each of the elements in this array is a reference
to another array. The first element of this second-level array is the type of element in
which the link is found. The subsequent elements occur in pairs. The first element
in a pair is the name of an attribute which denotes a link, and the second is the value
of that attribute. This should become a bit clearer with an example.

Example: listing links with HTML::LinkExtor
Here is a program which simply lists all of the links found in an HTML file.

use HTML::LinkExtor;

my $file = shift;

my $p = HTML::LinkExtor->new;

$p->parse_file($file);

my @links = $p->links;

foreach (@links) {
print 'Type: ', shift @$_, "\n";

168 CHAPTER

HTML
while (my ($name, $val) = splice(@$_, 0, 2)) {
print " $name -> $val\n";

}
}

and here is a sample HTML file which contains a number of links of various kinds:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head><title>Test HTML Page</title>
<link rel=stylesheet type='text/css' href='style.css'></head>
<body background="back.gif">
<h1 ALIGN=center>test HTML Page</h1>
<p>This is the first paragraph.
It contains a link</p>
<p>This is the 2nd paragraph.
It contains an image - </p>
<p>Here is an image used as a link

</p>
</body>
</html>

When we run this program on this HTML file, the output is as follows:

Type: link
href -> style.css

Type: body
background -> back.gif

Type: a
href -> http://www.perl.com/

Type: img
src -> test.gif

Type: a
href -> http://www.pm.org

Type: img
src -> pm.gif
lowsrc -> pmsmall.gif

Example: listing specific types of links with HTML::LinkExtor
As you can see, there are a number of different types of links that HTML:LinkExtor
returns. The complete list changes as the HTML specification changes, but basically
any element that can refer to an external file is examined during parsing. If you only
want to look at, say, links within an a tag, then you have a couple of options. You
can either parse the file as we’ve just discussed and only use the links you are inter-
ested in when you iterate over the list of links (using code something like: next
unless $_->[0] eq 'a'), or you can use the second, more complex, interface to
HTML::LinkExtor. For this interface, you need to pass the new function a refer-
ence to a function which the parser will call each time it encounters a link. This

Prebuilt HTML parsers 169
function will be passed the name of the element containing the link together with
pairs of parameters indicating the names and values of attributes which contain the
actual links. Here is an example which displays only the a links within a file:

use HTML::LinkExtor;

my $file = shift;

my $p = HTML::LinkExtor->new(\&check);

$p->parse_file($file);

my @links;

foreach (@links) {
print 'Type: ', shift @$_, "\n";
while (my ($name, $val) = splice(@$_, 0, 2)) {

print " $name -> $val\n";
}

}

sub check {
push @links, [@_] if $_[0] eq 'a';

}

Running our test HTML file through this program gives us the following output:

Type: a
href -> http://www.perl.com/

Type: a
href -> http://www.pm.org

which only lists the links that we are interested in.

9.3.2 HTML::TokeParser

Another useful prebuilt HTML parser module is HTML::TokeParser. This parser effec-
tively turns the standard HTML::Parser interface on its head. HTML::TokeParser
parses the file and stores the contents as a stream of tokens. You can request the next
token from the stream using the get_tag method. This method takes an optional
parameter which is a tag name. If this argument is used then the parser will skip tags
until it reaches a tag of the given type. There is also a get_text function which returns
the text at the current position in the stream.

Example: extracting <h1> elements with HTML::TokeParser
For example, to extract all of the <h1> elements from an HTML file you could use
code this way:

use HTML::TokeParser;

my $file = shift;

170 CHAPTER

HTML
my $p = HTML::TokeParser->new($file);

while ($p->get_tag('h1')) {
print $p->get_text(), "\n";

}

We will use the following HTML file to test this program:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head><title>Test HTML Page</title>
</head>
<body>
<h1>The first major item</h1>
<h2>Section 1.1</h2>
<p>Some text<p>
<h2>Section 1.2</h2>
<h3>Section 1.2.1</h3>
<p>blah</p>
<h3>Section 1.2.2</h3>
<p>blah</p>
<h1>Another major header</h1>
<h2>Section 2.1</h2>
<h3>Section 2.1.1</h3>
<h3>Section 2.1.2</h3>
<h2>Section 2.2</h2>
</body>
</html>

and here is the output:

The first major item
Another major header

Example: listing all header tags with HTML::TokeParser
A more sophisticated approach might be to look at the structure of the document
by examining all of the headers in the document. In this case we need to look a little
more closely at the return value from get_tag. This is a reference to an array, the
elements of which are different for start tags and close tags. For start tags the ele-
ments are: the tag name, a reference to a hash containing attribute names and val-
ues, a reference to an array indicating the original order of the attributes, and the
original HTML text. For an end tag the array contains the name of the tag prefixed
with the character / and the original HTML text.

We can therefore iterate over all of the tags in a document, checking them to see
which ones are headers and displaying the structure of the document using code
like this:

use HTML::TokeParser;

my $file = shift;

Prebuilt HTML parsers 171
my $p = HTML::TokeParser->new($file);

my $tag;
while ($tag = $p->get_tag()) {

next unless $tag->[0] =~ /^h(\d)/;

my $level = $1;

print ' ' x $level, "Head $level: ", $p->get_text(), "\n";
}

Notice that we only process tags where the name matches the regular expression
/^h(\d)/. This ensures that we only see HTML header tags. We put brackets
around the \d to capture this value in $1. This value indicates the level of the header
we have found and we can use it to calculate how far to indent the output. Running
this program on our previous sample HTML file gives the following output:

Head 1: The first major item
Head 2: Section 1.1
Head 2: Section 1.2
Head 3: Section 1.2.1
Head 3: Section 1.2.2

Head 1: Another major header
Head 2: Section 2.1
Head 3: Section 2.1.1
Head 3: Section 2.1.2

Head 2: Section 2.2

which is a very useful outline of the structure of the document.

9.3.3 HTML::TreeBuilder and HTML::Element

Another very useful subclass of HTML::Parser is HTML::TreeBuilder. As you can
probably guess from its name, this class builds a parse tree that represents an HTML
document. Each node in the tree is an HTML::Element object.

Example: parsing HTML with HTML::Treebuilder
Here is a simple script which uses HTML::TreeBuilder to parse an HTML document.

#!/usr/bin/perl -w
use strict;
use HTML::TreeBuilder;

my $h = HTML::TreeBuilder->new;

$h->parse_file(shift);

$h->dump;

print $h->as_HTML;

172 CHAPTER

HTML
In this example we create a new parser object using the HTML::Treebuilder->new
method. We then parse our file using the new object’s parse_file method.3

Notice that, unlike some other tree-based parsers, this function doesn’t return a
new tree object, rather the parse tree is built within the parser object itself.

As the example demonstrates, this class has a couple of ways to display the parse
tree. Both of these are, in fact, inherited from the HTML::Element class. The dump
method prints a simple representation of the element and its descendents and the
as_HTML method prints the element and its descendents as HTML. This might seem
a little less than useful given that we have just created the parse tree from an HTML
file, but there are at least three reasons why this might be useful. First, a great many
HTML files aren’t strictly valid HTML. HTML::TreeBuilder does a good job of
parsing invalid HTML and the as_HTML method can then be used to output valid
HTML. Second, the HTML::Element has a number of methods for changing the
parse tree, so you can alter your page and then use the as_HTML method to produce
the altered page. And third, the tree can be scanned in ways that would be inconve-
nient or impossible with just a token stream.

Notice that I’ve been saying that you can call HTML::Element methods on an
HTML::TreeBuilder object. This is because HTML::TreeBuilder inherits from
both HTML::Parser and HTML::Element. An HTML document should always start
with an <HTML> and end with a </HTML> tag and therefore the whole document can
be viewed as an HTML element, with all of the other elements contained within it. It is,
therefore, valid to call HTML::Element methods on our HTML::TreeBuilder object.

Both HTML::TreeBuilder and HTML::Element are part of the HTML-Tree
bundle of modules which can be found on the CPAN.

9.4 Extended example: getting weather forecasts

To finish this section, here is an example demonstrating the extraction of useful data
from web pages. We will get a weather forecast for the Central London area from
Yahoo! The front page to Yahoo!’s U.K. weather service is at weather.yahoo.co.uk
and by following a couple of links we can find that the address of the page contain-
ing the weather forecast for London is at http://uk.weather.yahoo.com/1208/
index_c.html. In order to extract the relevant data from the file we need to examine
the HTML source for the page. You can either use the View Source menu option of
your browser or write a quick Perl script using LWP and getstore to store the
page in a file.

3 Note that HTML::Treebuilder supports the same parsing interface as HTML::Parser, so you could just as
easily call $h->parse, passing it a variable containing HTML to parse.

Extended example: getting weather forecasts 173
Having retrieved a copy of the page we can examine it to find out where in the
page we can find the data that we want. Looking at the Yahoo! page I found that
the description of the weather outlook was within the first tag after the sixth
<table> tag. The high and low temperature measurements were within the follow-
ing two tags.4 Armed with this knowledge, we can write a program which will
extract the weather forecast and display it to the user. The program looks like this:

use HTML::TokeParser;
use LWP::Simple;

my $addr = 'http://uk.weather.yahoo.com/1208/index_c.html';

my $page = get $addr;

my $p = HTML::TokeParser->new(\$page)
|| die "Parse error\n";

$p->get_tag('table') !! die "Not enough table tags!" foreach (1 .. 6);

$p->get_tag('font');
my $desc = $p->get_text, "\n";

$p->get_tag('b');
my $high = $p->get_text;
$p->get_tag('b');
my $low = $p->get_text;

print "$desc\nHigh: $high, Low: $low\n";

You will notice that I’ve used HTML::TokeParser in this example. I could have also
chosen another HTML::Parser subclass or even written my own, but HTML::
TokeParser is a good choice for this task as it is very easy to target specific ele-
ments, such as the sixth <table> tag, and then move to the next tag.

In the program we use LWP::Simple to retrieve the required page from the web
site and then parse it using HTML::TokeParser. We then step through the parsed
document looking for <table> tags, until we find the sixth one. At this point we
find the next tag and extract the text within it using the get_text method.
This gives us the brief weather outlook. We then move in turn to each of the next
two tags and for each one extract the text from it. This gives us the forecast
high and low temperatures. We can then format all of this information in a nice way
and present it to the user.

This has been a particularly simple example, but similar techniques can be used
to extract just about any information that you can find on the World Wide Web.

4 You should, of course, bear in mind that web pages change very frequently. By the time you read this,
Yahoo! may well have changed the design of this page which will render this program useless.

174 CHAPTER

HTML
9.5 Further information

LWP and HTML::Parser together with all of the other modules that we have dis-
cussed in this section are not part of the standard Perl distribution. You will need to
download them from the CPAN (at www.cpan.org).

A very good place to get help with these modules is the LWP mailing list. To sub-
scribe, send a blank email to libwww-subscribe@perl.org (but please make sure that
you have read all of the documentation that comes with the module before posting
a question).

9.6 Summary

■ HTML is one of the most common data formats that you will come across
because of its popularity on the World Wide Web.

■ You can retrieve HTML documents from the Internet using the LWP bundle
of modules from the CPAN.

■ The main Perl module used for parsing HTML is HTML::Parser, but you
may well never need to use it, because subclasses like HTML::LinkExtor,
HTML::TokeParser, and HTML::TreeBuilder are often more useful for
particular tasks.

10XML
What this chapter covers:
■ What is XML and what’s wrong with HTML?
■ Parsing XML
■ Using handlers to control the parser
■ Parsing XML using the Document

Object Model
■ Converting an XML document to POD,

HTML, or plain text
175

176 CHAPTER

XML
Over the next few years, it looks as though XML will become the data exchange for-
mat of choice for a vast number of computer systems. In this chapter we will take a
look at some of the tools available for parsing XML with Perl.

10.1 XML overview

One of the problems we had when extracting the weather information from the web
page in the previous chapter was that it was difficult to know where in the page to
find the data we needed. The only way to do it was to closely examine the HTML file
and work out which tags surrounded our required data. This also meant that each
time the design of the page was changed, we would have to rework our program.

10.1.1 What’s wrong with HTML?

The reason this was so difficult was that HTML was designed to model the logical
structure of a document, not the meaning of the various elements. For example, an
HTML document makes it easy to recognize headings at various levels, paragraphs,
lists, and various other publishing elements. You can tell when an element should
be printed in bold, but the problem is that you don’t know why that particular ele-
ment was bold. It could be purely for emphasis, it could be because it is a row head-
ing in a table, or it could be because it is the temperature on a weather page.

Our task would be a lot easier if the mark-up in a document told us more about
the actual meaning of the data. In our weather example, it would be nice if there was
a <FORECAST> … </FORECAST> element that surrounded the actual forecast descrip-
tion and perhaps a <TEMPERATURE> … </TEMPERATURE> element which surrounded
each of the temperature figures in which we were interested. Even better, the
<TEMPERATURE> element could have attributes which told us whether it was a maxi-
mum or minimum temperature and whether it was in degrees Fahrenheit or Celsius.

10.1.2 What is XML?

This is exactly the kind of problem that XML was designed to solve. XML is the
Extensible Mark-up Language. In fact it isn’t really a mark-up language at all, it is a
method to define new mark-up languages which are better suited to particular tasks.
The way it works is by defining a syntax for Document Type Definitions (DTDs). A
DTD defines the set of elements that are allowed in a document, together with their
attributes and relationships to each other. It will define which elements are manda-
tory or optional, whether there is any defined order, and which elements can (or
must) contain other elements. The exact syntax of DTDs is beyond the scope of this
book, but there are a number of specialized books which cover it in some detail (for
example XML Pocket Reference by Robert Eckstein and published by O’Reilly).

XML overview 177
Sample XML file
Going back to our weather forecast example, we could design a DTD that defined a
file format for weather forecasts. Let’s keep it very simple and say that a sample
would look like this:

<FORECAST>
<OUTLOOK>

Partly Cloudy
</OUTLOOK>
<TEMPERATURE TYPE="MAX" DEGREES="C">12</TEMPERATURE>
<TEMPERATURE TYPE="MIN" DEGREES="C">6</TEMPERATURE>

</FORECAST>

If Yahoo! (or any other information provider) made a file available in this format
then we could download it from the Internet and parse it using Perl to extract the
relevant information. If the parser that we wrote was sophisticated enough, Yahoo!
could reorder the contents of the source file and we would still be able to access the
data. This is because the file is marked up to show what each data element is, not
how it should be displayed.1

Valid vs. well-formed
It’s worth stopping at this point to discuss a couple of XML concepts. There are two
levels of XML correctness. A correct XML document can be said to be valid or it can
be said to be well-formed. Well-formed is the easier criterion to adhere to. This
means that the document is syntactically correct or, in other words, it follows all of
the general rules for XML documents. Basically, these rules say this:

■ The document must have one top-level element.
■ All elements must have opening and closing tags (except in the special case of

empty tags where the opening tag is also used as the closing tag).
■ Opening and closing tags must be nested correctly (i.e., nested tags must be

closed in the reverse of the order in which they were opened).
■ All attributes must be quoted and cannot contain a < or an & (except as the

first character of a reference).

Our sample weather document fulfills all of these constraints and is, therefore,
well-formed. It cannot, however, be described as valid. A valid document is one that
follows the rules laid down in a DTD. This means that it must have all of the correct
elements in the right order and any nesting of elements must also be in combina-
tions sanctioned by the DTD. If we wrote a weather DTD and wrote our weather

1 XML fans have been known to disparage HTML by describing it as a “What You See Is All You Get” language.

178 CHAPTER

XML
document to conform with that DTD then we could call it valid. Currently, we
don’t have such a DTD so there is no way that our document can be valid.

XML parsers fall into two types. Validating parsers will check the document’s
structure against its DTD and nonvalidating parsers only check that the document is
well-formed.

10.2 Parsing XML with XML::Parser

Of course there are Perl XML parsers available. The most generalized one is the
CPAN module XML::Parser. This module is based on an XML parser called Expat.
Expat is a nonvalidating parser, so in Perl you will generally only be interested in the
well-formedness of documents.2

XML::Parser works in a similar way to HTML::Parser, but as XML is more com-
plex than HTML, XML::Parser needs to be more complex than HTML::Parser.

10.2.1 Example: parsing weather.xml

As an example of using XML::Parser, here is a simple script to parse our weather
XML file:

use strict;
use XML::Parser;

my %forecast;
my @curr;
my $type;

my $p = XML::Parser->new(Style => 'Stream');

$p->parsefile(shift);

print "Outlook: $forecast{outlook}\n";
foreach (keys %forecast) {

next if /outlook/;
print "$_: $forecast{$_}->{val} $forecast{$_}->{deg}\n";

}

sub StartTag {
my ($p, $tag) = @_;

push @curr, $tag;

if ($tag eq 'TEMPERATURE') {
$type = $_{TYPE};
$forecast{$type}->{deg} = $_{DEGREES};

2 I hope this explains my reluctance to go into the details of DTDs—XML::Parser makes no use of them.
There is, however, an experimental subclass of XML::Parser, called XML::Checker::Parser, which does
validate an XML document against a DTD.

Parsing XML with XML::Parser 179
}
}

sub EndTag {
pop @curr;

};

sub Text {
my ($p) = shift;

return unless /\S/;

s/^\s+//;
s/\s+$//;

if ($curr[-1] eq 'OUTLOOK') {
$forecast{outlook} .= $_;

} elsif ($curr[-1] eq 'TEMPERATURE') {
$forecast{$type}->{val} = $_;

}
}

Running this script against our sample weather XML document gives the follow-
ing result:

Outlook: Partly Cloudy
MAX: 12 C
MIN: 6 C

10.2.2 Using XML::Parser

There are a number of different ways to use XML::Parser. In this example we are
using it in a very similar manner to HTML::Parser. When we create the parser
object we pass it a hash containing various configuration options. In this case, the
hash consists of one key (Style) and an associated value, which is the string
Stream. The Style parameter tells XML::Parser that we want to use one of a
number of built-in parsing methods. The one that we want to use in this example is
called Stream. In this mode XML::Parser works very similarly to HTML::Parser.
There are a number of predefined methods which the parser will call when encoun-
tering various parts of the XML document. For this example we need to define three
of these methods. StartTag is called when the start of an XML tag is found,
EndTag is called when the end of a tag is seen, and Text is called when text data is
encountered. In each case the first parameter to the function will be a reference to
the underlying Expat object which is doing the parsing. In the StartTag and
EndTag functions the second parameter is the name of the tag which is being
started or ended. The complete original tag is stored in $_. Additionally, in the

180 CHAPTER

XML
StartTag function, the list of attributes is stored in %_. In the Text function, the
text that has been found is stored in $_.

This may all make a bit more sense if we look at the example code in more detail.
The main part of the program defines some global variables, creates the parser,

parses the file, and displays the information which has been extracted. The global
variables which it defines are: %forecast, which will store the forecast data that we
want to display, @curr which is a list of all of the current elements that we are in,
and $type which stores the current temperature type. All of the real work goes on
in the parsing functions which are called by the parser as it processes the file.

The StartTag function pushes the new tag on to the end of the @curr array,
and if the tag starts a TEMPERATURE element, it stores the values of the TYPE and
DEGREES attributes (which it finds in %_).

The EndTag function simply pops the last element from the @curr array. You
might think that we should check whether the tag that we are ending is of the same
type as the current end of this list but, if it wasn’t the case, the document wouldn’t
be well-formed and would, therefore, fail the parsing process.3

The Text function checks whether there is useful data in the text string (which is
stored in $_) and returns if it can’t find at least one nonspace character. It then
strips leading and trailing spaces from the data. If the current element we are pro-
cessing (given by $curr[-1]) is the OUTLOOK element, then the text must be the
outlook description and we store it in the appropriate place in the %forecast vari-
able. If the current element is a TEMPERATURE element, then the text will be the
temperature data and that is also stored in the %forecast hash (making use of the
current temperature type which is stored in the global $type variable).

Once the parsing is complete the data is all stored in the %forecast hash and we
can traverse the hash to display the required data. Notice that the method that we
use for this makes no assumptions about the list of temperature types used. If we
were to add average temperature data to the weather document, our program
would still display this.

Parsing failures
XML::Parser (and the other parsers which are based on it) have a somewhat harsh
approach to non-well-formed XML documents. They will always throw a fatal
exception when they encounter non-well-formed XML. Unfortunately, this behav-
ior is defined in the XML specifications, so they have no choice about this, but it can
still take beginners by surprise as they often expect the parse or parsefile
method to return an error code, but instead their entire program is halted.

3 This always throws a fatal exception, but there are ways to prevent your program from dying if you give it
non-well-formed XML, as we will see later.

Parsing XML with XML::Parser 181
It’s difficult to see what processing you might want to proceed with if your XML
document is incorrect, so in many cases dying is the correct approach for a program
to take. If, however, you have a case where you want to recover a little more grace-
fully you can catch the fatal exception. You do this using eval. If the code that is
passed to eval causes an exception, the program does not die, but the error mes-
sage is put in the variable $@. You can therefore parse your XML documents using
code like this:

eval { $p->parsefile($file) };

if ($@) {
die "Bad XML Document: $file\n";

} else {
print "Good XML!\n";

}

10.2.3 Other XML::Parser styles

The Stream style is only one of a number of styles which XML::Parser supports.
Depending on your requirements, another style might be better suited to the task.

Debug
The Debug style simply prints out a stylized version of your XML document. Pars-
ing our weather example file using the Debug style gives us the following output:

\\ ()
FORECAST || #10;
FORECAST ||
FORECAST \\ ()
FORECAST OUTLOOK || #10;
FORECAST OUTLOOK || Partly Cloudy
FORECAST OUTLOOK || #10;
FORECAST OUTLOOK ||
FORECAST //
FORECAST || #10;
FORECAST ||
FORECAST \\ (TYPE MAX DEGREES C)
FORECAST TEMPERATURE || 12
FORECAST //
FORECAST || #10;
FORECAST ||
FORECAST \\ (TYPE MIN DEGREES C)
FORECAST TEMPERATURE || 6
FORECAST //
FORECAST || #10;
//

182 CHAPTER

XML
If you look closely, you will see the structure of our weather document in this dis-
play. A line containing the opening tag of a new element contains the character
sequence \\ and the attributes of the element appear in brackets. A line containing
the character sequence // denotes an element’s closing tag, and a line containing
the character sequence || denotes the text contained within an element. The #10
sequences denote the end of each line of text in the original document.

Subs
The Subs style works in a very similar manner to the Stream style, except that
instead of the same functions being called for the start and end tags of each ele-
ment, a different pair of functions is called for each element type. For example, in
our weather document, the parser would expect to find functions called FORECAST
and OUTLOOK that it would call when it found <FORECAST> and <OUTLOOK> tags.
For the closing tags, it would look for functions called _FORECAST and _OUTLOOK.
This method prevents the program from having to check which element type is
being processed (although this information is still passed to the function as the sec-
ond parameter).

Tree
All of the styles that we have seen so far have been stream-based. That is, they move
through the document and call certain functions in your code when they come
across particular events in the document. The Tree style does things differently. It
parses the document and builds a data structure containing a logical model of the
document. It then returns a reference to this data structure.

The data structure generated by our weather document looks like this:

['FORECAST', [{}, 0, "\n ",
'OUTLOOK', [{}, 0, "\n Partly Cloudy\n "], 0, "\n ",
'TEMPERATURE', [('DEGREES' => 'C', 'TYPE' => 'MAX' }, 0, '12'], 0, "\n ",
'TEMPERATURE', [('DEGREES' => 'C', 'TYPE' => 'MAX' }, 0, '6'], 0, "\n"

]]

It’s probably a little difficult to follow, so let’s look at it in detail.
Each element is represented by a list. The first item is the element type and the

second item is a reference to another list which represents the contents of the ele-
ment. The first element of this second level list is a reference to a hash which con-
tains the attributes for the element. If the element has no attributes then the
reference to the hash still exists, but the hash itself is empty. The rest of the list is a
series of pairs of items, which represent the text, and elements that are contained
within the element. These pairs of items have the same structure as the original two-
item list, with the exception that a text item has a special element type of 0.

Parsing XML with XML::Parser 183
If you’re the sort of person who thinks that a picture is worth a thousand words,
then figure 10.1 might have saved me a lot of typing.

In the figure the variable $doc is returned from the parser. You can also see the
arrays which contain the definitions of the XML content and the hashes which con-
tain the attributes.

Example: using XML::Parser in Tree style
This may become clearer still if we look at some sample code for dealing with one of
these structures. The following program will print out the structure of an XML doc-
ument. Using it to process our weather document will give us the following output:

FORECAST []

OUTLOOK []
Partly Cloudy

TEMPERATURE [DEGREES: C, TYPE: MAX]
12

TEMPERATURE [DEGREES: C, TYPE: MIN]
6

Here is the code:

use strict;
use XML::Parser;

0

1
2
3
4
5

hashref
'0'
"\n"
'OUTLOOK'
listref
'0'

empty

6
7
8
9

10
11
12
13

14

"\n"
'TEMPERATURE'
listref
'0'
"\n"
'TEMPERATURE'
listref
'0'

"\n"

0

1
2

hashref
'0'
"\nPartly Cloudy\n"

0
1
2

hashref
'0'

0

1
2

hashref
'0'

'12'

'12'

empty

'C'degrees
type 'MAX'

'C'degrees
type 'MIN'

0

1

'FORECAST'
listref

$doc

Figure 10.1 Output from XML::Parser Tree style

184 CHAPTER

XML
my $p = XML::Parser->new(Style => 'Tree');

my $doc = $p->parsefile(shift);

my $level = 0;

process_node(@$doc);

sub process_node {
my ($type, $content) = @_;

my $ind = ' ' x $level;

if ($type) { # element
my $attrs = shift @$content;

print $ind, $type, ' [';
print join(', ', map { "$_: $attrs->{$_}" } keys %{$attrs});
print "]\n";

++$level;
while (my @node = splice(@$content, 0, 2)) {

process_node(@node); # Recursively call this subroutine
}
--$level;

} else { # text
$content =~ s/\n/ /g;
$content =~ s/^\s+//;
$content =~ s/\s+$//;
print $ind, $content, "\n";

}
}

Let’s look at the code in more detail.
The start of the program looks similar to any number of other parsing programs

that we’ve seen in this chapter. The only difference is that we create our XML:Parser
object with the Tree style. This means that the parsefile method returns us a ref-
erence to our tree structure.

As we’ve seen above, this is a reference to a list with two items in it. We’ll call one
of these two-item lists a node and write a function called process_node which will
handle one of these lists. Before calling process_node, we initialize a global vari-
able to keep track of the current element nesting level.

In the process_node function, the first thing that we do is determine the type of
node we are dealing with. If it is an element, then the first item in the node list will
have a true value. Text nodes have the value 0 in this position, which will evaluate
as false.

Parsing XML with XML::Parser 185
If we are dealing with an element, then shifting the first element off of the con-
tent list will give us a reference to the attribute hash. We can then print out the ele-
ment type and attribute list indented to the correct level.

Having dealt with the element and its attributes we can process its contents. One
advantage of using shift to get the attribute hash reference is that it now leaves
the content list with an even number of items in it. Each pair of items is another
node. We can simply use splice to pull the nodes off the array one at a time and
pass them recursively to process_node, pausing only to increment the level before
processing the content and decrementing it again when finished.

If the node is text, then the second item in the node list will be the actual text. In
this case we just clean it up a bit and print it out.

Example: parsing weather.xml using the Tree style
This program will work with any tree structure that is generated by XML::Parser
using the Tree style. However, more often you will want to do something a little
more specific to the document with which you are dealing. In our case, this will be
printing out a weather forecast. Here is a Tree-based program for printing the fore-
cast in our usual format.

use strict;
use XML::Parser;

my $p = XML::Parser->new(Style => 'Tree');

my $doc = $p->parsefile(shift);

process_node(@$doc);

sub process_node {
my ($type, $content) = @_;

if ($type eq 'OUTLOOK') {
print 'Outlook: ', trim($content->[2]), "\n";

} elsif ($type eq 'TEMPERATURE') {
my $attrs = $content->[0];

my $temp = trim($content->[2]);
print "$attrs->{TYPE}: $temp $attrs->{DEGREES}\n";

}

if ($type) {
while (my @node = splice @$content, 1, 2) {

process_node(@node)
}

}
}

sub trim {

186 CHAPTER

XML
local $_ = shift;

s/\n/ /g;
s/^\s+//;
s/\s+$//;

return $_;
}

The basic structure of this program is quite similar to the previous one. All of the
work is still done in the process_node function. In this version, however, we are
on the lookout for particular element types which we know we want to process.
When we find an OUTLOOK element or a TEMPERATURE element we know exactly
what we need to do. All other elements are simply ignored. In the case of an
OUTLOOK element we simply extract the text from the element and print it out.
Notice that the text contained within the element is found at $content->[2], the
third item in the content array. This is true for any element that only contains text,
as the first two items in the content list will always be a reference to the attribute
hash and the character 0.

The processing for the TEMPERATURE element type is only slightly more complex
as we need to access the attribute hash to find out the type of the temperature (min-
imum or maximum) and the kind of degrees in which is it measured.

Notice that we still need to process any child elements and that this is still done in
the same way as in the previous program—by removing nodes from the @$content
list. In this case we haven’t removed the attribute hash from the front of the list, so we
start the splice from the second item in the list (the second item has the index 0).

Objects
The Objects style works very much like the Tree style, except that instead of arrays
and hashes, the document tree is presented as a collection of objects. Each element
type becomes a different object class. The name of the class is created by appending
main:: to the front of the element’s name.4 Text data is turned into an object of
class main::Characters. The value that is returned by the parse method is a ref-
erence to an array of such objects. As a well-formed XML object can only have one
top-level element, this array will only have one element.

4 This is the default behavior. You can create your objects within other packages by using the Pkg option
to XML::Parser->new. For example:

my $p = XML::Parser->new(Style => 'Objects', Pkg => 'Some_Other_Package');

Parsing XML with XML::Parser 187
Attributes of the element are stored in the element hash. This hash also contains
a special key, Kids. The value associated with this key is a reference to an array
which contains all of the children of the element.

Example: parsing XML with XML::Parser using the Objects style
Here is a program that displays the structure of any given XML document using the
Objects style:

use strict;
use XML::Parser;

my $p = XML::Parser->new(Style => 'Objects');

my $doc = $p->parsefile(shift);

my $level = 0;

process_node($doc->[0]);

sub process_node {
my ($node) = @_;

my $ind = ' ' x $level;

my $type = ref $node;
$type =~ s/^.*:://;

if ($type ne 'Characters') {
my $attrs = {%$node};
delete $attrs->{Kids};

print $ind, $type, ' [';
print join(', ', map { "$_: $attrs->{$_}" } keys %{$attrs});
print "]\n";

++$level;
foreach my $node (@{$node->{Kids}}) {

process_node($node);
}
--$level;

} else {
my $content = $node->{Text};
$content =~ s/\n/ /g;
$content =~ s/^\s+//;
$content =~ s/\s+$//;
print $ind, $content, "\n" if $content =~ /\S/;

}
}

This program is very similar to the example that we wrote using the Tree style.
Once again, most of the processing is carried out in the process_node function. In

188 CHAPTER

XML
this case each node is represented by a single reference rather than a two-item list.
The first thing that we do in process_node is to work out the type of element with
which we are dealing. We do this by using the standard Perl function ref. This
function takes one parameter, which is a reference, and returns a string containing
the type of object that the reference refers to. For example, if you pass it a reference
to an array, it will return the string ARRAY. This is a good way to determine the
object type a reference has been blessed into. In our case, each reference that we
pass to it will be of type main::Element, where Element is the name of one of our
element types. We remove the main:: from the front of the string to leave us with
the specific element with which we are dealing.

If we are dealing with an element (rather than character data) we then take a
copy of the object hash which we will use to get the list of attributes. Notice that
we don’t use the more obvious $attrs = $node as this only copies the reference
and still leaves it pointing to the same original hash. As the next line of the code
deletes the Kids array reference from this hash, we use the slightly more complex
$attrs = {%$node} as this takes a copy of the original hash and returns a refer-
ence to the new copy. We can then delete the Kids reference without doing any
lasting damage to the original object.

Having retrieved the attribute hash, we display the element type along with its
attributes. We then need to process all of the element’s children. We do this by iter-
ating across the Kids array (which is why it’s a good idea that we didn’t delete the
original earlier), passing each object in turn to process_node.

If the object with which we are dealing is of the class Characters then it contains
character data and we can access the actual text by using the special Text key.

Choosing between Tree and Object styles
The Tree and Object styles can both be used to address the same set of problems.
You would usually use one of these two styles when your document processing
requires multiple passes over the document structure. Whether you choose the Tree
or Objects style for your tree-based parsing requirements is simply a matter of per-
sonal taste.

10.2.4 XML::Parser handlers

The XML::Parser styles that we have been discussing are a series of prebuilt meth-
ods for parsing XML documents in a number of popular ways. If none of these
styles meet your requirements, there is another way that you can use XML::Parser
which gives even more control over the way it works. This is accomplished by set-
ting up a series of handlers which can respond to various events that are triggered
while parsing a document. This is very similar to the way we used HTML::Parser
or the Stream style of XML::Parser.

Parsing XML with XML::Parser 189
Handlers can be set to process a large number of XML constructs. The most obvi-
ous ones are the start and end of an XML element or character data, but you can also
set handlers for the XML declaration, various DTD definitions, XML comments, proc-
essing instructions, and any other construct that you find in an XML document.

You set handlers either by using the Handlers parameter when you create a parser
object, or by using the setHandlers method later on. If you use the Handlers
parameter then the value associated with the parameter should be a reference to a
hash. In this hash the keys will be handler names, and each value will be a reference
to the appropriate function.

Different handler functions receive different sets of parameters. The full set of
handlers and their parameters can be found in the XML::Parser documentation,
but here is a brief summary of the most frequently used ones:

■ Init—Called before parsing of a document begins. It is passed a reference to
the Expat parser object.

■ Final—Called after parsing of a document is complete. It is passed a reference
to the Expat parser object.

■ Start—Called when the opening tag of an XML element is encountered. It is
passed a reference to the Expat parser object, the name of the element, and
a series of pairs of values which represents the name and value of the ele-
ment’s attributes.

■ End—Called when the closing tag of an XML element is encountered. It is
passed a reference to the Expat parser object and the name of the element.

■ Char—Called when character data is encountered. It is passed a reference to
the Expat parser object and the string of characters that has been found.

All of these subroutines are passed a reference to the Expat parser object. This is
the actual object that XML::Parser uses to parse your XML document. It is useful
in some more complex parsing techniques, but at this point you can safely ignore it.

Example: parsing XML using XML::Parser handlers
Here is an example of our usual program for displaying the document structure,
rewritten to use handlers.

use strict;
use XML::Parser;

my $p = XML::Parser->new(Handlers => {Init => \&init,
Start => \&start,
End => \&end,
Char => \&char});

my ($level, $ind);

190 CHAPTER

XML
my $text;

$p->parsefile(shift);

sub init {
$level = 0;
$text = '';

}

sub start {
my ($p, $tag) = (shift, shift);

my %attrs = @_ if @_;

print $ind, $tag, ' [';
print join ', ', map { "$_: $attrs{$_}" } keys %attrs;
print "]\n";

$level++;
$ind = ' ' x $level;

}

sub end {
print $ind, $text, "\n";
$level--;
$ind = ' ' x $level;
$text = '';

}

sub char {
my ($p, $str) = (shift, shift);

return unless $str =~ /\S/;

$str =~ s/^\s+//;
$str =~ s/\s+$//;

$text .= $str;
}

In this case we only need to define four handlers for Init, Start, End, and Char.
The Init handler only exists to allow us to set $level and $text to initial values.

In the Start handler we do very similar processing to the previous examples.
That is, we print the element’s name and attributes. In this case it is very easy to get
these values as they are passed to us as parameters. We also increment $level and
use the new value to calculate an indent string which we will print before any output.

In the End handler we print out any text that has been built up in $text, decre-
ment $level, recalculate $ind, and reset $text to an empty string.

In the Char handler we do the usual cleaning that strips any leading and trailing
white space and appends the string to $text. Notice that it is possible that because

XML::DOM 191
of the way the parser works, any particular sequence of character data can be split up
and processed in a number of calls to this handler. This is why we build up the
string and print it out only when we find the closing element tag. This would be
even more important if we were applying some kind of formatting to the text before
displaying it.

10.3 XML::DOM

As we have seen, XML::Parser is a very powerful and flexible module, and one that
can be used to handle just about any XML processing requirement. However, it’s
well known that one of the Perl mottoes is that there’s more than one way to do it,
and one of the cardinal virtues of a programmer is laziness.5 It should not therefore
come as a surprise that there are many other XML parser modules available from the
CPAN. Some of these are specialized to deal with XML that conforms to a particular
DTD (we will look at one of these a bit later), but many others present yet more
ways to handle general XML parsing tasks. Probably the most popular of these is
XML::DOM. This is a tree-based parser which returns a radically different view of an
XML document.

XML::DOM implements the Document Object Model. DOM is a way to access
arbitrary parts of an XML document. DOM has been defined by the World Wide
Web Consortium (W3C), and is rapidly becoming a standard method to parse and
access XML documents.

XML::DOM is a subclass of XML::Parser, so all XML::Parser methods are still
available, but on top of these methods, XML::DOM implements a whole new set of
methods which allow you to walk the document tree.

10.3.1 Example: parsing XML using XML::DOM

As an example of XML::DOM in use, here is our usual document structure script rewrit-
ten to use it.

use strict;
use XML::DOM;

my $p = XML::DOM::Parser->new;

my $doc = $p->parsefile(shift);

my $level = 0;

process_node($doc->getFirstChild);

sub process_node {

5 The other two being impatience and hubris, according to Larry Wall.

192 CHAPTER

XML
my ($node) = @_;

my $ind = ' ' x $level;;

my $nodeType = $node->getNodeType;
if ($nodeType == ELEMENT_NODE) {

my $type = $node->getTagName;

my $attrs = $node->getAttributes;

print $ind, $type, ' [';
my @attrs;
foreach (0 .. $attrs->getLength - 1) {

my $attr = $attrs->item($_);
push @attrs, $attr->getNodeName . ': ' . $attr->getValue;

}
print join (', ', @attrs);

print "]\n";

my $nodelist = $node->getChildNodes;

++$level;
for (0 .. $nodelist->getLength - 1) {

process_node($nodelist->item($_));
}
--$level;

} elsif ($nodeType == TEXT_NODE) {
my $content = $node->getData;
$content =~ s/\n/ /g;
$content =~ s/^\s+//;
$content =~ s/\s+$//;
print $ind, $content, "\n" if $content =~ /\S/;

}
}

A lot of the structure of this program will be very familiar by now, so we will look at
only the differences between this version and the Tree style version.

You should first notice that the value returned by parsefile is a reference to an
object that represents the whole document. To get the single element which con-
tains the whole document, we need to call this object’s getFirstChild method.
We can then pass this reference to the process_node function.

Within the process_node function we still do exactly the same things that we
have been doing in previous versions of this script; it is only the way that we access
the data which is different. To work out the type of the current node, we call its
getNodeType method. This returns an integer defining the type. The XML::DOM
module exports constants which make these values easier to interpret. In this

Specialized parsers—XML::RSS 193
simplified example we only check for ELEMENT_NODE or TEXT_NODE, but there are a
number of other values listed in the module’s documentation.

Having established that we are dealing with an element node, we get the tag’s
name using the getTagName method and a reference to its list of attributes using the
getAttributes method. The value returned by getAttributes is a reference to a
NodeList object. We can get the number of nodes in the list with the getLength
method and retrieve each node in the list in turn, using the item method. For each of
the nodes returned we can get the attribute name and value using the getNodeName
and getValue methods, respectively.

Having retrieved and displayed the node attributes we can deal with the
node’s children. The getChildNodes method returns a NodeList of child nodes
which we can iterate over (using getLength and item again), recursively passing
each node to process_node.

If the node that we are dealing with is a text node, we get the actual text using the
getData method, and process the text in exactly the same way we have before.

This description has barely scratched the surface of XML::DOM, but it is some-
thing that you will definitely come across if you process XML data.

10.4 Specialized parsers—XML::RSS

Some of the subclasses of XML::Parser are specialized to deal with particular types
of XML documents, i.e., documents which conform to a particular DTD. As an
example we will look at one of the most popular of these parsers, XML::RSS.

10.4.1 What is RSS?

As you can probably guess, XML::RSS parses rich site summary (RSS) files. The RSS
format has become very popular among web sites that want to exchange ideas
about the information they are currently displaying. This is most often used by
news-based sites, as they can create an RSS file containing their current headlines
and other sites can grab the file and create a list of the headlines on a web page.

Quite a community of RSS-swapping has built up around these files. My Netscape
and Slashdot are two of the biggest sites using this technology. Chris Nandor has
built a web site called My Portal which demonstrates a web page which users can
configure to show news stories from the sources which interest them.

10.4.2 A sample RSS file

Here is an example of an RSS file for a fictional news site called Dave’s news.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rss PUBLIC "//Netscape Communications//DTD RSS 0.91//EN"

194 CHAPTER

XML
"http://my.netscape.com/publish/formats/rss-0.91.dtd">

<rss version="0.91">

<channel>
<title>Dave's News</title>
<link>http://daves.news</link>
<description>All the news that's unfit to print!</description>
<language>en</language>
<pubDate>Wed May 10 21:06:38 2000</pubDate>
<managingEditor>ed@daves.news</managingEditor>
<webMaster>webmaster@daves.news</webMaster>



<item>
<title>Data Munging Book tops best sellers list</title>
<link>http://daves.news/cgi-bin/read.pl?id=1</link>

</item>

<item>
<title>Microsoft abandons ASP for Perl</title>
<link>http://daves.news/cgi-bin/read.pl?id=2</link>

</item>

<item>
<title>Gates offers job to Torvalds</title>
<link>http://daves.news/cgi-bin/read.pl?id=3</link>

</item>

</channel>
</rss>

I hope you can see that the structure is very simple. The first thing to notice is that
because the file could potentially be processed using a validating parser, it needs a
reference to a DOCTYPE (or DTD). This is given on the second line and points to
version 0.91 of the DTD (which, you’ll notice, was defined by Netscape). After the
DOCTYPE definition, the next line opens the top-level element, which is called
<rss>. Within one RSS file you can define multiple channels; however, most RSS
files will contain only one channel.

With the channel element you can define a number of data items which define
the channel. Only a subset of the possible items is used in this example. The next
complex data item is the <image> element. This element defines an image which a
client program can display to identify your channel. You can define a URL to fetch
the image from, a title, and a link. It is obviously up to the client program how this

Specialized parsers—XML::RSS 195
information is used, but if the channel was being displayed in a browser, it might be
useful to display the image as a hot link to the given URL and to use the title as the
ALT text for the image.

After the image element comes a list of the items which the channel contains.
Once more, the exact use of this information is up to the client application, but
browsers often display the title as a hot link to the given URL. Notice that the URLs
in the list of items are to individual news stories, whereas the earlier URLs were to
the main page of the site.

10.4.3 Example: creating an RSS file with XML::RSS

XML::RSS differs from other XML parsers that we have seen as it can also be used to
create an RSS file. Here is the script that I used to create the file given above:

#!/usr/bin/perl -w

use strict;
use XML::RSS;

my $rss = XML::RSS->new;

$rss->channel(title => "Dave's News",
link => 'http://daves.news',
language => 'en',
description => "All the news that's unfit to print!",
pubDate => scalar localtime,
managingEditor => 'ed@daves.news',
webMaster => 'webmaster@daves.news');

$rss->image(title => "Dave's News",
url => 'http://daves.news/images/logo.gif',
link => 'http://daves.news');

$rss->add_item(title=>'Data Munging Book tops best sellers list',
link=>'http://daves.news/cgi-bin/read.pl?id=1');

$rss->add_item(title=>'Microsoft abandons ASP for Perl',
link=>'http://daves.news/cgi-bin/read.pl?id=2');

$rss->add_item(title=>'Gates offers job to Torvalds',
link=>'http://daves.news/cgi-bin/read.pl?id=3');

$rss->save('news.rss');

As you can see, XML::RSS makes the creation of RSS files almost trivial. You create
an RSS object using the class’s new method and then add a channel using the
channel method. The named parameters to the channel method are the various
subelements of the <channel> element in the RSS file. I’m only using a subset here.
The full set is described in the documentation for the XML::RSS which you can

196 CHAPTER

XML
access by typing perldoc XML::RSS from your command line once you have
installed the module.

The image method is used to add image information to the RSS object. Once
more, the various subelements of the <image> element are passed as named param-
eters to the method. For each item that you wish to add to the RSS file, you call the
add_item method. Finally, to write the RSS object to a file you use the save
method. You could also use the as_string method, which will return the XML
that your RSS object generates.

10.4.4 Example: parsing an RSS file with XML::RSS

Interpreting an RSS file using XML::RSS is just as simple. Here is a script which dis-
plays some of the more useful data from an RSS file.

use strict;

use XML::RSS;

my $rss = XML::RSS->new;

$rss->parsefile(shift);

print $rss->channel('title'), "\n";
print $rss->channel('description'), "\n";
print $rss->channel('link'), "\n";
print 'Published: ', $rss->channel('pubDate'), "\n";
print 'Editor: ', $rss->channel('managingEditor'), "\n\n";

print "Items:\n";

foreach (@{$rss->items}) {
print $_->{title}, "\n\t<", $_->{link}, ">\n";

}

The file is parsed using the parsefile method (which XML::RSS overrides from its
parent XML::Parser). This method adds data structures modeling the RSS file to
the RSS parser object. This data can be accessed using various accessor methods.
The channel method gives you access to the various parts of the <channel> ele-
ment, and the items method returns a list of the items in the file. Each element in
the items list is a reference to a hash containing the various attributes of one item
from the file.

If we run this script on our sample RSS file, here is the output that we get.

Dave's News
All the news that's unfit to print!
http://daves.news
Published: Wed May 10 21:06:38 2000
Editor: ed@daves.news

Items:

Producing different document formats 197
Data Munging Book tops best sellers list
<http://daves.news/cgi-bin/read.pl?id=1>

Microsoft abandons ASP for Perl
<http://daves.news/cgi-bin/read.pl?id=2>

Gates offers job to Torvalds
<http://daves.news/cgi-bin/read.pl?id=3>

This example script only displays very basic information about the RSS file, but it
should be simple to expand it to display more details and to produce an HTML page
instead of text. There are a number of example scripts in the XML::RSS distribution
which you can use as a basis for your scripts.

10.5 Producing different document formats

One of the best uses of XML is producing different outputs from the same input
file. As an example of this kind of processing, in this section we will look at produc-
ing a number of different document formats from a single XML document. The
example that we will look at is the documentation for Perl modules. Traditionally,
when a Perl module is released to the CPAN the accompanying documentation is
written in plain old documentation (POD). POD is a very simple markup language
which can be embedded within Perl code. The Perl interpreter knows to ignore it,
and there are a number of documentation tools which can be used to extract the
POD from a Perl script and present it in a number of formats.6

In this example we will put the documentation for a Perl module in an XML file
and use a Perl script to convert this XML document to POD, HTML, or plain text.

10.5.1 Sample XML input file

Here is an example of the XML document we will use.

<?xml version="1.0" encoding="UTF-8"?>
<README>

<NAME>Test README File</NAME>

<SYNOPSIS>
This is a summary of the file.
It should appear in PRE tags

</SYNOPSIS>

<DESCRIPTION>
<TEXT>This is the full description of the file</TEXT>
<SUBSECTION>

<HEAD>Subsection Title</HEAD>
<TEXT>Subsection text</TEXT>

6 You can find out a lot more about POD by reading the perlpod manual page.

198 CHAPTER

XML
</SUBSECTION>
<SUBSECTION>

<HEAD>Another Subsection Title</HEAD>
<TEXT>More Subsection text</TEXT>
<LIST TYPE='bullet'>

<ITEM>List item 1</ITEM>
<ITEM>List item 2</ITEM>

</LIST>
</SUBSECTION>

</DESCRIPTION>

<AUTHOR>
<ANAME>Dave Cross</ANAME>
<EMAIL>dave@mag-sol.com</EMAIL>

</AUTHOR>

<SEE_ALSO>
<LIST TYPE='bullet'>

<ITEM>Something</ITEM>
<ITEM>Something else</ITEM>

</LIST>
</SEE_ALSO>

</README>

This file supports most of the headings that you will see in a Perl module’s README file.

10.5.2 XML document transformation script

Here is the script that we will use to transform it into other formats.

1: #!/usr/bin/perl -w
2:
3: use strict;
4:
5: use XML::Parser;
6: use Getopt::Std;
7: use Text::Wrap;
8:
9: my %formats = (h => {name => 'html'},

10: p => {name => 'pod'},
11: t => {name => 'text'});
12:
13: my %opts;
14: (getopts('f:', \%opts) && @ARGV)
15: || die "usage: format_xml.pl -f h|p|t xml_file\n";
16:
17: die "Invalid format: $opts{f}\n" unless exists $formats{$opts{f}};
18:
19: warn "Formatting file as $formats{$opts{f}}->{name}\n";
20:

Producing different document formats 199
21: my $p = XML::Parser->new(Style => 'Tree');
22: my $tree = $p->parsefile(shift);
23:
24: my $level = 0;
25: my $ind = '';
26: my $head = 1;
27:
28: top($tree);
29:
30: process_node(@$tree);
31:
32: bot();
33:
34: sub process_node {
35: my ($type, $content) = @_;
36:
37: $ind = ' ' x $level;
38:
39: if ($type) {
40:
41: local $_ = $type;
42:
43: my $attrs = shift @$content;
44:
45: /^NAME$/ && name($content);
46: /^SYNOPSIS$/ && synopsis($content);
47: /^DESCRIPTION$/ && description();
48: /^TEXT$/ && text($content);
49: /^CODE$/ && code($content);
50: /^HEAD$/ && head($content);
51: /^LIST$/ && do {list($attrs, $content); @$content = ()};
52: /^AUTHOR$/ && author();
53: /^ANAME$/ && aname($content);
54: /^EMAIL$/ && email($content);
55: /^SEE_ALSO$/ && see_also($content);
56:
57: while (my @node = splice @$content, 0, 2) {
58: ++$level;
59: ++$head if $type eq 'SUBSECTION';
60: process_node(@node);
61: --$head if $type eq 'SUBSECTION';
62: --$level;
63: }
64: }
65: }
66:
67: sub top {
68: $tree = shift;
69:
70: if ($opts{f} eq 'h') {
71: print "<html>\n";

200 CHAPTER

XML
72: print "<head>\n";
73: print "<title>$tree->[1]->[4]->[2]</title>\n";
74: print "</head>\n<body>\n";
75: } elsif ($opts{f} eq 'p') {
76: print "=pod\n\n";
77: } elsif ($opts{f} eq 't') {
78: print "\n", $tree->[1]->[4]->[2], "\n";
79: print '-' x length($tree->[1]->[4]->[2]), "\n\n";
80: }
81: }
82:
83: sub bot {
84: if ($opts{f} eq 'h') {
85: print "</body>\n</html>\n";
86: } elsif ($opts{f} eq 'p') {
87: print "=cut\n\n";
88: } elsif ($opts{f} eq 't') {
89: # do nothing
90: }
91: }
92:
93: sub name {
94: my $content = shift;
95:
96: if ($opts{f} eq 'h') {
97: print "<h1>NAME</h1>\n";
98: print "<p>$content->[1]</p>\n"
99: } elsif ($opts{f} eq 'p') {

100: print "=head1 NAME\n\n";
101: print "$content->[1]\n\n";
102: } elsif ($opts{f} eq 't') {
103: print "NAME\n\n";
104: print $ind, "$content->[1]\n\n";
105: }
106: }
107:
108: sub synopsis {
109: my $content = shift;
110:
111: if ($opts{f} eq 'h') {
112: print "<h1>SYNOPSIS</h1>\n";
113: print "<pre>$content->[1]</pre>\n"
114: } elsif ($opts{f} eq 'p') {
115: print "=head1 SYNOPSIS\n\n";
116: print "$content->[1]\n";
117: } elsif ($opts{f} eq 't') {
118: print "SYNOPSIS\n";
119: print "$content->[1]\n";
120: }
121: }
122:

Producing different document formats 201
123: sub description {
124:
125: if ($opts{f} eq 'h') {
126: print "<h1>DESCRIPTION</h1>\n";
127: } elsif ($opts{f} eq 'p') {
128: print "=head1 DESCRIPTION\n\n";
129: } elsif ($opts{f} eq 't') {
130: print "DESCRIPTION\n\n";
131: }
132: }
133:
134: sub text {
135: my $content = shift;
136:
137: if ($opts{f} eq 'h') {
138: print "<p>$content->[1]</p>\n"
139: } elsif ($opts{f} eq 'p') {
140: print wrap('', '', trim($content->[1])), "\n\n";
141: } elsif ($opts{f} eq 't') {
142: print wrap($ind, $ind, trim($content->[1])), "\n\n";
143: }
144: }
145:
146: sub code {
147: my $content = shift;
148:
149: if ($opts{f} eq 'h') {
150: print "<pre>$content->[1]</pre>\n"
151: } elsif ($opts{f} eq 'p') {
152: print "$content->[1]\n";
153: } elsif ($opts{f} eq 't') {
154: print "$content->[1]\n";
155: }
156: }
157:
158: sub head {
159: my $content = shift;
160:
161: if ($opts{f} eq 'h') {
162: print "<h$head>", trim($content->[1]), "</h$head>\n"
163: } elsif ($opts{f} eq 'p') {
164: print "=head$head ", trim($content->[1]), "\n\n";
165: } elsif ($opts{f} eq 't') {
166: print trim($content->[1]), "\n\n";
167: }
168: }
169:
170: sub list {
171: my ($attrs, $content) = @_;
172:
173: my %list = (bullet => 'ul', numbered => 'ol');

202 CHAPTER

XML
174:
175: my $type = $attrs->{TYPE};
176:
177: if ($opts{f} eq 'h') {
178: print "<$list{$type}>\n";
179: while (my @node = splice @$content, 0, 2) {
180: if ($node[0] eq 'ITEM') {
181: print "$node[1]->[2]\n";
182: }
183: }
184: print "</$list{$type}>\n";
185: } elsif ($opts{f} eq 'p') {
186: print "=over 4\n";
187: while (my @node = splice @$content, 0, 2) {
188: my $cnt = 1;
189: if ($node[0] eq 'ITEM') {
190: print "=item *\n$node[1]->[2]\n\n";
191: }
192: }
193: print "=back\n\n";
194: } elsif ($opts{f} eq 't') {
195: while (my @node = splice @$content, 0, 2) {
196: my $cnt = 1;
197: if ($node[0] eq 'ITEM') {
198: print $ind, "* $node[1]->[2]\n";
199: }
200: }
201: print "\n";
202: }
203: }
204:
205: sub author {
206: if ($opts{f} eq 'h') {
207: print "<h1>AUTHOR</h1>\n";
208: } elsif ($opts{f} eq 'p') {
209: print "=head1 AUTHOR\n\n";
210: } elsif ($opts{f} eq 't') {
211: print "AUTHOR\n\n";
212: }
213: }
214:
215: sub aname {
216: my $content = shift;
217:
218: if ($opts{f} eq 'h') {
219: print "<p>$content->[1]\n"
220: } elsif ($opts{f} eq 'p') {
221: print trim($content->[1]), ' ';
222: } elsif ($opts{f} eq 't') {
223: print $ind, trim($content->[1]), ' ';
224: }

Producing different document formats 203
225: }
226:
227: sub email {
228: my $content = shift;
229:
230: if ($opts{f} eq 'h') {
231: print '<', trim($content->[1]), "></p>\n"
232: } elsif ($opts{f} eq 'p') {
233: print '<', trim($content->[1]), ">\n\n";
234: } elsif ($opts{f} eq 't') {
235: print '<', trim($content->[1]), ">\n\n";
236: }
237: }
238:
239: sub see_also {
240:
241: if ($opts{f} eq 'h') {
242: print "<h1>SEE ALSO</h1>\n";
243: } elsif ($opts{f} eq 'p') {
244: print "=head1 SEE ALSO\n\n";
245: } elsif ($opts{f} eq 't') {
246: print "SEE ALSO\n\n";
247: }
248: }
249:
250: sub trim {
251: local $_ = shift;
252:
253: s/\n/ /g;
254: s/^\s+//;
255: s/\s+$//;
256:
257: $_;
258: }

This is the longest script that we have looked at so far, so let’s review it a section at
a time.

Lines 1 to 3 should be the standard way that you start a Perl script.
Lines 5 to 7 bring in the modules which we will be using. XML::Parser will be

used to parse the XML input, Getopt::Std is used to process command line
options, and Text::Wrap is used to reformat lines of text.

Lines 9 to 11 define the types of formatting that the script can handle in a hash.
Each value is another hash containing information about the format. Currently, it
only lists the name of the format, but if there are other attributes of a format that
are useful, this would be a good place to store them.

204 CHAPTER

XML
Lines 13 to 19 use the function getops from Getopt::Std to process the com-
mand line flags. In this case there is just one flag that indicates the chosen output
type. This is stored in $opts{f}. If we are passed an unknown format we warn the
user and die. On line 19 we let the user know what format we are using.

Line 21 creates an XML parser using the Tree style and line 22 uses this object to
parse the XML document, returning the document tree data structure which we
store in $tree.

Lines 24 to 26 define some global variables: $level will store the nesting level
of the current element, $ind will store a string of spaces which will be used to
indent text, and $head will store the current header level.

Line 28 calls the top function which is defined in lines 67 to 81. This function
prints header information for the chosen format. For HTML, this is all of the
<HEAD> … </HEAD> section, for POD it is simply the text =pod, and for text it is the
title of the document underlined. Notice that we use the expression $tree->[1]-
>[4]->[2] to get the title of the document. We can take this kind of shortcut
because we know the structure of our document. $tree->[1] is the content of the
first node in the tree (i.e., everything within the <README> element). $tree->[1]-
>[4] is the content of the second node contained within the <README> element.
The first node within this element is the text node containing the newline character
immediately after the <README> tag.7 The second node is the <NAME> element.
$tree->[1]->[4]->[2] is the content of the first node within the <NAME> ele-
ment, i.e., the name text, which we will use as a title.

Line 30 calls the process_node function which is defined in lines 34 to 65. This
function is where most of the work goes on. The basic structure should be familiar
from the previous tree-based parsing scripts that we have discussed. The function is
passed the type of a node together with a reference to its content. If the node is an
element (remember the value of $type is the name of the element or zero if it is a
text node), we extract the attributes and call the relevant subroutine to process each
type of element. In most cases we pass the element content to the subroutine, but
there are two exceptions. The <DESCRIPTION> element has no useful content
(other than, of course, its contained elements, which will be handled elsewhere).
The <LIST> element is more complex. First, it is the only element with an attribute
list which needs to be passed on to the subroutine and, second, as the list subrou-
tine processes all of the element’s content, we need to set the content to an empty
list to prevent it being processed again.

7 Of course, the script now relies on this newline character always being there. Relying on the presence of
this ignorable white space is a serious limitation of this script, and if you wanted to use a script like this in
earnest you would need to design something a little more robust.

Producing different document formats 205
Having processed the element, we need to process any child elements. This is
accomplished in much the same way as we have in previous examples. We simply
walk the @$content list a node at a time (where a node is represented by two items
in the array), passing the nodes one at a time to process_node. We pause only to
increment the $level and $head variables before starting to process the list and to
decrement them after we have finished.

Once the script returns from the main call to process_node, the final action
(line 32) is to call the function bot. The function is defined in lines 83 to 91 and
simply finishes off the file in that same way that top started it (except that in this
case the processing is much simpler).

The rest of the script consists of definitions of the functions which handle the
various element types. Most of these are very similar and simple. All they do is print
out the content of the element surrounded by various fixed strings. It is, however,
worth taking a closer look at the head and list functions.

head is the function which prints out header sections. In its POD and HTML sec-
tions it needs to know which level of header to display. It accomplishes this by using the
global $head variable which is incremented each time a <SUBSECTION> element is
encountered. Like many of the other element functions, head also makes use of a helper
function called trim which removes all of the excess white space from a text string.

list is the most complex of the element functions as it builds up a complete list
rather than relying on the usual subelement handling which we have used for other
elements. This is because in the future we may well want to support numbered lists,
and it will be far easier if the list numbers can all be calculated within the same func-
tion. This function therefore traverses the @$content array in much the same way
as the process_node function.

10.5.3 Using the XML document transformation script

Having described the script in detail, let’s run it in the various modes on our sample
document and see what output we get. The script takes the input file as an argu-
ment and writes its output to STDOUT. We can, therefore, call the script like this:

format_xml.pl -f p doc.xml > doc.pod
format_xml.pl -f h doc.xml > doc.html
format_xml.pl -f t doc.xml > doc.txt

to get the POD, HTML, and text outputs. Here are the results.

POD file

=pod

=head1 NAME

206 CHAPTER

XML
Test README File

=head1 SYNOPSIS

This is a summary of the file.
It should appear in PRE tags

=head1 DESCRIPTION

This is the full description of the file

=head2 Subsection Title

Subsection text

=head2 Another Subsection Title

More Subsection text

=over 4

=item *
List item 1

=item *
List item 2

=back
=head1 AUTHOR

Dave Cross <dave@mag-sol.com>

=head1 SEE_ALSO

=over 4

=item *
Something

=item *
Something else

=back

=cut

HTML file
<html>
<head>
<title>Test README File</title>
</head>
<body>
<h1>NAME</h1>
<p>Test README File</p>
<h1>SYNOPSIS</h1>
<pre>

Producing different document formats 207
This is a summary of the file.
It should appear in PRE tags

</pre>
<h1>DESCRIPTION</h1>
<p>This is the full description of the file</p>
<h2>Subsection Title</h2>
<p>Subsection text</p>
<h2>Another Subsection Title</h2>
<p>More Subsection text</p>

List item 1
List item 2

<h1>AUTHOR</h1>
<p>Dave Cross
<dave@mag-sol.com></p>
<h1>SEE_ALSO</h1>

Something
Something else

</body>
</html>

Text file

Test README File

NAME

Test README File

SYNOPSIS

This is a summary of the file.
It should appear in PRE tags

DESCRIPTION

This is the full description of the file

Subsection Title

Subsection text

Another Subsection Title

More Subsection text

* List item 1
* List item 2

AUTHOR

208 CHAPTER

XML
Dave Cross <dave@mag-sol.com>

SEE_ALSO

* Something
* Something else

10.6 Further information

The XML and Perl world is a very exciting place at the moment. Things are chang-
ing all the time. The best way to keep abreast of the latest news is to read the Perl-
XML mailing list. You can subscribe via the web interface at:

http://listserv.ActiveState.com/mailman/listinfo/perl-xml.
None of the modules that we have discussed in this chapter are installed as part

of the standard Perl installation. You will need to get them from the CPAN and
install them yourself.

10.7 Summary

■ XML is becoming a very common data format, particularly for exchanging
data between different computer systems.

■ XML documents can be either valid or well-formed. Currently, no Perl XML
parser checks for validity.

■ XML parsing in Perl is very easy using XML::Parser and its various subclasses.
■ XML::Parser has a number of different styles which can be used to solve par-

ticular types of parsing tasks. If none of the standard styles suit your require-
ments, you can use handlers for even more control over how the parser works.

■ XML::DOM brings the industry-standard Document Object Model to the
Perl/XML community.

■ Specialized parsers such as XML::RSS can be used to parse documents con-
forming to specific DTDs.

11Building your
own parsers
What this chapter covers:
■ Creating your own parser
■ Returning parsed data
■ Matching grammar rules
■ Building a data structure to return
■ Parsing complex file formats into complex

data structures
209

210 CHAPTER

Building your own parsers
The prebuilt parsers that we have looked at in the two previous chapters are, of
course, very useful, but there are many times when you need to parse data in a
format for which a prebuilt parser does not exist. In these cases you can create
your own parser using a number of Perl modules. The most flexible of these is
Parse::RecDescent, and in this chapter we take a detailed look at its use.

11.1 Introduction to Parse::RecDescent

Parse::RecDescent is a tool for building top-down parsers which was written by
Damian Conway. It doesn’t form a part of the standard Perl distribution, so you will
need to get it from the CPAN. It can be found at http://www.cpan.org/modules/
by-module/Parse/. The module comes with copious documentation and more
example code than anyone would ever want to read.

Using Parse::RecDescent is quite simple. In summary you define a grammar
for the parser to use, create a parser object to process the grammar, and then pass
the text to be parsed to the parser. We’ll see more specific examples later, but all the
programs will have a basic structure which looks like this:

use Parse::RecDescent;

my $grammar = q(
Text that define your grammar

);

my $parser = Parse::RecDescent->new($grammar);

my $text = q(
Scalar which contains the text to be parsed
);

top_rule is the name of the top level rule in you grammar.
$parser->top_rule($text);

11.1.1 Example: parsing simple English sentences

For example, if we go back to the example of simple English sentences which we
used in chapter 8, we could write code like this in order to check for valid sentences.

use Parse::RecDescent;

my $grammar = q(
sentence: subject verb object
subject: noun_phrase
object: noun_phrase
verb: 'wrote' | 'likes' | 'ate'
noun_phrase: pronoun | proper_noun | article noun
article: 'a' | 'the' | 'this'
pronoun: 'it' | 'he'
proper_noun: 'Perl' | 'Dave' | 'Larry'

Introduction to Parse::RecDescent 211
noun: 'book' | 'cat'
);

my $parser = Parse::RecDescent->new($grammar);

while (<DATA>) {
chomp;
print "'$_' is ";
print 'NOT ' unless $parser->sentence($_);
print "a valid sentence\n";

}

__END__
Larry wrote Perl
Larry wrote a book
Dave likes Perl
Dave likes the book
Dave wrote this book
the cat ate the book
Dave got very angry

Notice that we have expanded the terminals to actually represent a (very limited)
subset of English words. The output of this script is a follows:

'Larry wrote Perl' is a valid sentence
'Larry wrote a book' is a valid sentence
'Dave likes Perl' is a valid sentence
'Dave likes the book' is a valid sentence
'Dave wrote this book' is a valid sentence
'the cat ate the book' is a valid sentence
'Dave got very angry' is NOT a valid sentence

Which shows that “Dave got very angry” is the only text in our data, which is not a
valid sentence.1

Explaining the code
The only complex part of this script is the definition of the grammar. The syntax of
this definition is similar to one that we used in chapter 8. The only major difference
is that we have replaced the arrow -> with a colon. If you read the rules, replacing
the colon with the phrase “is made up of” and the vertical bar with the word “or”,
then these rules are easy to understand.

In this example all of our terminals are fixed strings. As we shall see later in the
chapter, it is quite possible to match Perl regular expressions instead.

Having defined our grammar, we simply create a parser object using this gram-
mar and use that object to see if our sentences are valid. Notice that we use the

1 By the rules of our grammar of course—not by the real rules of English.

212 CHAPTER

Building your own parsers
method sentence to validate each sentence in turn. This method was created by
the Parse::RecDescent object as it read our grammar. The sentence method
returns true or false depending on whether or not the parser object successfully
parsed the input data.

11.2 Returning parsed data

The previous example is all very well if you just want to know whether your data
meets the criteria of a given grammar, but it doesn’t actually produce any useful
data structures which represent the parsed data. For that we have to look a little
deeper into Parse::RecDescent.

11.2.1 Example: parsing a Windows INI file

Let’s look at parsing a Windows INI file.
These files contain a number of named
sections. Each of these sections contain a
number of assignment statements. Fig-
ure 11.1 shows an example INI together
with the various parts that make up the
file structure.

In this example we have sections called
“files” and “rules.” The files section lists
the names of the input and output files
together with their extension; the rules

section lists a number of configuration options. This file might be used to control the
configuration of a text-processing program.

Before looking at how we would get the data
out, it is a good idea to decide what data struc-
ture we are going to use to store the parsed
data. In this case it seems fairly obvious that a
hash of hashes would be most useful. Each key
within the first hash would be a section name
and the value would be a reference to another
hash. Within these second-level hashes the keys

would be the left-hand side of the assignment statement and the values would be the
right-hand side. Figure 11.2 shows this data structure.

This means that you can get an individual value very easily using code like:

$input_file = $Config{files}{input};

[files]
input=data_in
output = data_out
ext=dat

[rules]
quotes=double
sep=comma
spaces=trim

Figure 11.1 INI file structure.

Section name

Value

Section

Key

input
ext

output

data_in
ext

data_out

rules
files

hashref
hahgref

quotes
sep

spaces

double
comma

trim

Figure 11.2 INI file data structure.

Returning parsed data 213
11.2.2 Understanding the INI file grammar

Let’s take a look at a grammar that defines an INI file. We’ll use the syntax found
in Parse::RecDescent.

file: section(s)
section: header assign(s)
header: '[' /\w+/ ']'
assign: /\w+/ '=' /\w+/

The grammar can be explained in English like this:
■ An INI file consists of one or more sections.
■ Each section consists of a header followed by one or more assignments.
■ The header consists of a [character, one or more word characters, and a]

character.
■ An assignment consists of a sequence of one or more word characters, an =

character, and another sequence of one or more word characters.

Using subrule suffixes
There are a couple of new features to notice here. First, we have used (s) after the
names of some of our subrules. This means that the subrule can appear one or more
times in the rule. There are a number of other suffixes which can control the num-
ber of times that a subrule can appear, and the full list is in table 11.1. In this case
we are saying that a file can contain one or more sections and that each section can
contain one or more assignment statements.

Table 11.1 Optional and repeating subrules

Subrule
suffix

Meaning

(?) Optional subrule. Appears zero or one time.

(s) Mandatory repeating subrule. Appears one or more times.

(s?) Optional repeating subrule. Appears zero or more times.

(N) Repeating subgroup. Must appear exactly N times.

(N..M) Repeating subgroup. Must appear between N and M times.

(..M) Repeating subgroup. Must appear between 1 and M times.

(N..) Repeating subgroup. Must appear at least N times.

214 CHAPTER

Building your own parsers
Using regular expressions
The other thing to notice is that we are using regular expressions in many places to
match our terminals. This is useful because the names of the sections and the keys
and values in each section can be any valid word. In this example we are saying that
they must all be a string made up of Perl’s word characters.2

11.2.3 Parser actions and the @item array

In order to extract data, we can make use of parser actions. These are
pieces of code that you write and then attach to any rule in a gram-
mar. Your code is then executed whenever that rule is matched.
Within the action code a number of special variables are available.
The most useful of these is probably the @item array which contains
a list of the values that have been matched in the current rule. The
value in $item[0] is always the name of the rule which has matched.
For example, when our header rule is matched, the @item array will
contain “header”, “[”, the name of the section, and “]” with ele-
ments 0 to 33 (figure 11.3).

In order to see what values are being matched, you could put action code on
each of the rules in the grammar like the following code. All this code does is print
out the contents of the @item array each time a rule is matched.

file: section(s) { print "$item[0]: $item[1]\n"; }
section: header assign(s) { print "$item[0]: $item[1] $item[2]\n"; }
header: '[' /\w+/ ']' { print "$item[0]: $item[1] $item[2] $item[3]\n"; }
assign: /\w+/ '=' /\w+/ { print "$item[0]: $item[1] $item[2] $item[3]\n"; }

However, Parse::RecDescent provides an easier way to achieve the same result,
by providing a way to assign a default action to all rules in a grammar. If you assign
a string containing code to the variable $::RD_AUTOACTION, then that code will be
assigned to every rule which doesn’t have an explicit action.

11.2.4 Example: displaying the contents of @item

Here is a sample program which reads an INI file and displays the contents of @item
for each matched rule.

use Parse::RecDescent;

my $grammar = q(

2 That is, alphanumeric characters and the underbar character.
3 The same information is also available in a hash called %item, but I’ll use @item in these examples. For

more details on %item see perldoc Parse::RecDescent.

0
1
2

header
[
files

3]

Figure 11.3

The @item array

after matching

the header rule

for the first time

Returning parsed data 215
file: section(s)
section: header assign(s)
header: '[' /\w+/ ']'
assign: /\w+/ '=' /\w+/

);

$::RD_AUTOACTION = q { print "$item[0]: @item[1..$#item]\n"; 1 } ;

$parser = Parse::RecDescent->new($grammar);

my $text;

{
$/ = undef;
$text = <STDIN>;

}

$parser->file($text);

The general structure of the code and the grammar should be familiar. The only
thing new here is the code assigned to $::RD_AUTOACTION. This code will be run
whenever a rule that doesn’t have its own associated action code is matched. When
you run this program using our earlier sample INI file as input, the resulting output
is as follows:

header: [files]
assign: input = data_in
assign: output = data_out
assign: ext = dat
section: 1 ARRAY(0x8adc868)
header: [rules]
assign: quotes = double
assign: sep = comma
assign: spaces = trim
section: 1 ARRAY(0x8adc844)
file: ARRAY(0x8adc850)

How rule matching works
The previous example shows us a couple of interesting things about the way that
Parse::RecDescent works. Look at the order in which the rules have been
matched and recall what we saw about the workings of top-down parsers in
chapter 8. Here you can clearly see that a rule doesn’t match until all of its subrules
have been matched successfully.

Secondly, look at the output for the section and file rules. Where you have
matched a repeating subrule, @item contains a reference to an array, and where you
have matched a nonrepeating subrule, @item contains the value 1. This shows us
something about what a matched rule returns. Each matched rule returns a true
value. By default this is the number 1, but you can change this in the associated

216 CHAPTER

Building your own parsers
action code. Be sure that your code has a true return value, or else the parser will
think that the match has failed.

11.2.5 Returning a data structure

The value that is returned from the top-level rule will be the value returned by the
top-level rule method when called by our script. We can use this fact to ensure that
the data structure that we want is returned. Here is the script that will achieve this:

use Parse::RecDescent;

my $grammar = q(
file: section(s)

{ my %file;
foreach (@{$item[1]}) {

$file{$_->[0]} = $_->[1];
}
\%file;

}
section: header assign(s)

{ my %sec;
foreach (@{$item[2]}) {

$sec{$_->[0]} = $_->[1];
}
[$item[1], \%sec]

}
header: '[' /\w+/ ']' { $item[2] }
assign: /\w+/ '=' /\w+/

{ [$item[1], $item[3]] }
);

$parser = Parse::RecDescent->new($grammar);

my $text;

{
$/ = undef;
$text = <STDIN>;

}

my $tree = $parser->file($text);

foreach (keys %$tree) {
print "$_\n";
foreach my $key (keys %{$tree->{$_}}) {

print "\t$key: $tree->{$_}{$key}\n";
}

}

Another example: the CD data file 217
The code that has been added to the previous script is in two places. First (and most
importantly) in the parser actions and, secondly, at the end of the script to display
the returned data structure and demonstrate what is returned.

The action code might look a little difficult, but it’s probably a bit easier if you
read it in reverse order and see how the data structure builds up.

The assign rule now returns a reference to a two-element list. The first element
is the left-hand side of the assignment and the second element is the right-hand
side. The header rule simply returns the name of the section.

The section rule creates a new hash called %sec. It then iterates across the list
returned by the assign subrule. Each element in this list is the return value from
one assign rule. As we saw in the previous paragraph, this is a reference to a two-
element list. We convert each of these lists to a key/value pair in the %sec hash.
Finally, the rule returns a reference to a two-element hash. The first element of this
list is the return value from the header rule (which is the section name), and the
second element is a reference to the section hash.

The file rule uses a very similar technique to take the list of sections and convert
them into a hash called %file. It then returns the %file hash.

This means that the file method returns a reference to a hash. The keys to the
hash are the names of the sections in the file and the values are references to
hashes. The keys to the second level hashes are the text from the left-hand side of
the assignments, and the values are the associated strings from the right-hand side
of the assignment.

The code at the end of the script prints out the values in the returned data struc-
ture. Running this script against our sample INI file gives us the following result:

rules
quotes: double
sep: comma
spaces: trim

files
input: data_in
ext: dat
output: data_out

which demonstrates that we have built up the data structure that we wanted.

11.3 Another example: the CD data file

Let’s take a look at another example of parsing a data file with Parse::RecDescent.
We’ll take a look at how we’d parse the CD data file that we discussed in chapter 8.
What follows is the data file we were discussing:

218 CHAPTER

Building your own parsers
Dave's CD Collection
16 Sep 1999

Artist Title Label Released
--
Bragg, Billy Workers' Playtime Cooking Vinyl 1988
+She's Got A New Spell
+Must I Paint You A Picture
Bragg, Billy Mermaid Avenue EMI 1998
+Walt Whitman's Niece
+California Stars
Black, Mary The Holy Ground Grapevine 1993
+Summer Sent You
+Flesh And Blood
Black, Mary Circus Grapevine 1995
+The Circus
+In A Dream
Bowie, David Hunky Dory RCA 1971
+Changes
+Oh You Pretty Things
Bowie, David Earthling EMI 1997
+Little Wonder
+Looking For Satellites

6 Records

In chapter 8 we came up with a rather unsatisfying way to extract the data from this
file and put it into a data structure. Now that Parse::RecDescent is in our tool-
kit, we should be able to come up with something far more elegant.

As with the last example, the best approach is to start with a grammar for the
data file.

11.3.1 Understanding the CD grammar

Here is the grammar that I have designed for parsing the CD data file.

file: header body footer
header: /.+/ date
date: /\d\d?\s+\w+\s+\d{4}/
body: col_heads /-+/ cd(s)
col_heads: col_head(s)
col_head: /\w+/
cd: cd_line track_line(s)
cd_line: /.{14}/ /.{19}/ /.{15}/ /\d{4}/
track_line: '+' /.*/
footer: /\d+/ 'CDs'

Let’s take a closer look at the individual rules. Like the parser, we’ll take a top-
down approach.

■ A data file is made up of three sections—a header, a body, and a footer.
■ The file header is made up of a string of any characters followed by a date.

Another example: the CD data file 219
■ A date is one or two digits followed by at least one space, any number of
word characters, at least one space and four digits. Note that we are assuming
that all dates will appear in the same format as the one in our sample file.

■ The file body contains the column headers followed by a number of - charac-
ters and one or more CD records.

■ The column headers are made up of one or more headers per individual column.
■ A column header consists of a number of word characters.
■ A CD record consists of a CD line followed by at least one track record.
■ A CD line consists of a number of records, each of which is a particular num-

ber of characters long. We have to match in this way, as the CD record is in
fixed width format.

■ A track record contains a + character followed by at least one other character.
■ A footer record consists of at least one digit followed by the text “CDs”.

11.3.2 Testing the CD file grammar

Having defined our grammar, one of the best ways to test it is to write a brief pro-
gram like the one that we used to test the English sentences. The program would
look like this:

use Parse::RecDescent;

use vars qw(%datas @cols);

my $grammar = q(
file: header body footer
header: /.+/ date
date: /\d+\s+\w+\s+\d{4}/
body: col_heads /-+/ cd(s)
col_heads: col_head(s)
col_head: /\w+/
cd: cd_line track_line(s)
cd_line: /.{14}/ /.{19}/ /.{15}/ /\d{4}/
track_line: '+' /.+/ { $item[2] }
footer: /\d+/ 'CDs'

);

$parser = Parse::RecDescent->new($grammar);

my $text;
{

local $/ = undef;

$text = <STDIN>;
}

print $parser->file($text) ? "valid" : "invalid";

220 CHAPTER

Building your own parsers
This program will print valid or invalid depending on whether or not the file
passed to it on STDIN parses correctly against the given grammar. In this case it
does, but if it doesn’t and you want to find out where the errors are, there are two
useful variables which Parse::RecDescent uses to help you follow what it is doing.

Debugging the grammar with $::RD_TRACE and $::RD_HINT
Setting $::RD_TRACE to true will display a trace of the parsing process as it
progresses, allowing you to see where your grammar and the structure of the file
disagree. If the problems are earlier in the process and there are syntax errors in
your grammar, then setting $::RD_HINT to true will provide hints on how you
could fix the problems. Setting $::RD_AUTOACTION to a snippet of code which
prints out the values in @item can also be a useful debugging tool.

11.3.3 Adding parser actions

Having established that our grammar does what we want, we can proceed with
writing the rest of the program. As previously, most of the interesting code is in the
parser actions. Here is the complete program:

use strict;
use Parse::RecDescent;
use Data::Dumper;

use vars qw(@cols);

my $grammar = q(
file: header body footer

{
my %rec =

(%{$item[1]}, list => $item[2], %{$item[3]});
\%rec;

}
header: /.+/ date

{ { title => $item[1], date => $item[2] } }
date: /\d+\s+\w+\s+\d{4}/ { $item[1] }
body: col_heads /-+/ cd(s) { $item[3] }
col_heads: col_head(s) { @::cols = @{$item[1]} }
col_head: /\w+/ { $item[1] }
cd: cd_line track_line(s)

{ $item[1]->{tracks} = $item[2]; $item[1] }
cd_line: /.{14}/ /.{19}/ /.{15}/ /\d{4}/

{ my %rec; @rec{@::cols} = @item[1 .. $#item]; \%rec }
track_line: '+' /.+/ { $item[2] }
footer: /\d+/ 'CDs'

{ { count => $item[1] } }
);

my $parser = Parse::RecDescent->new($grammar);

Another example: the CD data file 221
my $text;

{
local $/ = undef;

$text = <DATA>;
}

my $CDs = $parser->file($text);

print Dumper($CDs);

As is generally the case, the parser actions will be easier to follow if we examine
them bottom up.

The footer rule returns a reference to a hash with only one value. The key to
this hash is count and the value is $item[1], which is the number that is matched
on the footer line. As we’ll see when we get to the file rule, I chose to return this
as a hash reference since it makes it easier to combine parts into a data structure.

The track rule returns the name of the track.
The cd_line rule builds a hash where the keys are the column headings and the

values are the associated values from the CD line in the file. In order to do this, it
makes use of the global @cols array which is created by the col_heads rule.

The cd rule takes the hash reference which is returned by the cd_line rule and
creates another element in the same hash where the key is tracks, and the value is
a reference to the array of multiple track records which is returned by the track(s)
subrule. The rule then returns this hash reference.

The col_head rule matches one individual column heading and returns that value.
The col_heads rule takes the array which is returned by the col_head(s) sub-

rule and assigns this array to the global array @cols, so that it can later be used by
the cd_line rule.

The body rule returns the array returned by the cd(s) subrule. Each element of
this array is the hash returned by one occurrence of the cd rule.

The date rule returns the date that was matched.
The header rule works similarly to the footer rule. It returns a reference to a

two-element hash. The keys in this hash are “title” and “date” and the values are
the respective pieces of matched text.

The file rule takes the three pieces of data returned by the header, body, and
footer rules and combines them into a single hash. It then returns a reference to
this hash.

222 CHAPTER

Building your own parsers
Checking the output with Data::Dumper
The program uses the Data::Dumper module to print out a data dump of the data
structure that we have built. For our sample CD data file, the output from this pro-
gram look like this:

$VAR1 = {
'list' => [

{
'Released' => '1988',
'Artist' => 'Bragg, Billy ',
'Title' => 'Workers\' Playtime ',
'Label' => 'Cooking Vinyl ',
'tracks' => [

'She\'s Got A New Spell',
'Must I Paint You A Picture'

]
},
{

'Released' => '1998',
'Artist' => 'Bragg, Billy ',
'Title' => 'Mermaid Avenue ',
'Label' => 'EMI ',
'tracks' => [

'Walt Whitman\'s Niece',
'California Stars'

]
},
{

'Released' => '1993',
'Artist' => 'Black, Mary ',
'Title' => 'The Holy Ground ',
'Label' => 'Grapevine ',
'tracks' => [

'Summer Sent You',
'Flesh And Blood'

]
},
{

'Released' => '1995',
'Artist' => 'Black, Mary ',
'Title' => 'Circus ',
'Label' => 'Grapevine ',
'tracks' => [

'The Circus',
'In A Dream'

]
},
{

'Released' => '1971',
'Artist' => 'Bowie, David ',

Other features of Parse::RecDescent 223
'Title' => 'Hunky Dory ',
'Label' => 'RCA ',
'tracks' => [

'Changes',
'Oh You Pretty Things'

]
},
{

'Released' => '1997',
'Artist' => 'Bowie, David ',
'Title' => 'Earthling ',
'Label' => 'EMI ',
'tracks' => [

'Little Wonder',
'Looking For Satellites'

]
}

],
'title' => 'Dave\'s CD Collection',
'count' => '6',
'date' => '16 Sep 1999'

};

You can see that this structure is the same as the one that we built in chapter 8. The
main part of the structure is a hash, the keys of which are “list,” “title,” “count,”
and “date.” Of these, all but “list” is associated with a scalar containing data from
the header or the footer of the file. The key “list” is associated with a reference to
an array. Each element of that array contains the details of one CD in a hash. This
includes a reference to a further list that contains the tracks from each CD.

11.4 Other features of Parse::RecDescent

That completes our detailed look at using Parse::RecDescent. It should give
you enough information to parse some rather complex file formats into equally
complex data structures. We have, however, only scratched the surface of what
Parse::RecDescent can do. Here is an overview of some of its other features.
For further details see the documentation that comes with the module.

■ Autotrees—This is a method by which you can get the parser to automatically
build a parse tree for your input data. If you don’t have a specific requirement
for your output data structure, then this functionality might be of use to you.

■ Lookahead rules—Sometimes the data that you are parsing can be more complex
than the examples that we have covered. In particular, if a token can change its
meaning depending on what follows it, you should make use of lookahead

224 CHAPTER

Building your own parsers
rules. These allow you to specify text in the rule which must be matched, but is
not consumed by the match. This is very similar to the (?= …) construct in Perl
regular expressions.

■ Error handling—Parse::RecDescent has a powerful functionality to allow
you to output error messages when a rule fails to match.

■ Dynamic rules—Because terminals are either text strings or regular expressions
and both of these can contain variables which are evaluated at run time, it is
possible to create rules which change their meaning as the parse progresses.

■ Subrule argument—It is possible for a rule to pass arguments down into its
subrule and, therefore, alter the way that they work.

■ Incremental parsing—It is possible to change the definition of a grammar
which a program is running, using two methods called Extend and Replace.

■ Precompiling parsers—Using the Precompile method it is possible to create
a new module that will parse a particular grammar. This new module can then
be used in programs without Parse::RecDescent being present.

11.5 Further information

The best place to get more information about Parse::RecDescent is in the man-
ual pages that come with the module. Typing perldoc Parse::RecDescent at any
command line will show you this documentation. The distribution also contains
almost forty demo programs and an HTML version of Damian Conway’s article for
the Winter 1998 issue of The Perl Journal titled “The man of descent,” which is a
useful introduction to parsing in general and Parse::RecDescent in particular.

11.6 Summary

■ Parse::RecDescent is a Perl module for building recursive descent parsers.
■ Parsers are created by passing the new method the definition of a grammar.
■ The parser is run by passing the text to be parsed to a method named after

the top-level rule in the grammar.
■ Parser action code can be associated with grammar rules. The associated code

is called when the rule matches.
■ The @item array contains details of the tokens which have matched in a

given rule.
■ Parser actions can change the value that will be returned by a rule. This is

how you can build up parse tree data structures.

Part IV

The big picture

At the end of the tale, our heroes return home determined to
spread the news to the general population about the tools and tech-
niques they have learned. Nevermore will the people be terrified by the
data munging beast.

This is obviously a cause for much celebration.

12Looking back—
and ahead
What this chapter covers:
■ Why munge data?
■ Just how useful is Perl?
■ Where can I find Perl support?
■ Where can I find more information?
227

228 CHAPTER

Looking back—and ahead
The received wisdom for giving a presentation is that you should “tell them what
you’re going to tell them, tell them, and then tell them what you’ve told them.” A
book is no different in principle to a presentation, so in this chapter we’ll review
what we’ve covered and discuss where you can go for more information.

12.1 The usefulness of things

A brief reminder of why you munge data and, more importantly, why you should
munge it using Perl.

12.1.1 The usefulness of data munging

In chapter 1 I said that data munging lived in the “interstices between computer
systems.” I hope that you can now see just how all-pervasive it is. There are very
few computing tasks that don’t involve munging data to some degree. From the
run-once command line script which loads data files into a new database, to the
many-thousand lines of code which run bank’s accounting systems, they are all
munging data in one way or another.

12.1.2 The usefulness of Perl

The next aim of the book was to demonstrate how well Perl fits into the data
munging problem space. By allowing programmers to define a problem in a way
that is closer to the way that their thought processes work and further from the way
that computer CPUs work, many programmers find that using Perl makes them far
more productive.

In a recent article on www.perl.com, Mark-Jason Dominus talks about the differ-
ence between “natural” code and “synthetic” code. Natural code is the code which
is fundamentally tied in with solving the problem at hand. Synthetic code is code
which is merely a side effect of the programming constructs that you use to solve
the problem. A good example of synthetic code is a loop counter. In many pro-
gramming languages, if you wanted to iterate across an array you would need to
write code similar to this:

for ($i = 0; $i <= $#arr; $i++) {
some_function($arr[$i]);

}

You can, of course, write code like this in Perl (as the sample demonstrates), but a
far more Perlish way to write it is like this:

foreach (@arr) {
some_function($_);

}

Things to know 229
Because the second version removes all of the synthetic code required to iterate
across an array, it is far easier for a programmer to follow exactly what is happening.

Synthetic code only gets in the way of a programmer’s understanding of a pro-
gram so the goal must always be to eliminate as much of it as possible. Because Perl
is particularly good at allowing programmers to model the problem exactly, it fol-
lows that you end up with a far smaller amount of synthetic code than in many
other languages.

If you’re interested in reading more (and you should be), Dominus’ article is at
http://www.perl.com/pub/2000/06/commify.html.

12.1.3 The usefulness of the Perl community

One of the best things about using Perl is the community that goes with it. It
seems to attract people who are only too happy to help others—whether by sub-
mitting their code to the CPAN, answering a technical question in a newsgroup
such as comp.lang.perl.misc, or on a website like Perl Monks, or even writing arti-
cles for The Perl Journal.

If you are going to use Perl, I would certainly encourage you to become part of
the Perl community. There are a number of ways to do this:

■ Join your local Perl Mongers group. These are users’ groups. You can find
the contact for your local group at www.pm.org. If there isn’t one for your
area, why not form one?

■ Visit comp.lang.perl.misc regularly. This is the main Perl newsgroup. As long
as you follow the rules of Netiquette, you will be very welcome there.

■ Read The Perl Journal. This is the only printed magazine dedicated to Perl.
You can subscribe at www.tpj.com.

■ Submit your code to the CPAN. If you have written code which could be of
use to others, why not put it in a place where everyone can find it? Details on
becoming a CPAN author can be found at www.cpan.org.

12.2 Things to know

A brief list of things that you should know to make your data munging work as easy
as possible.

12.2.1 Know your data

When munging data, the more that you know about your source and your sink, the
better you will be able to design your program and, perhaps more importantly, your
intermediate data structures. You need to know as much as possible about not only

230 CHAPTER

Looking back—and ahead
the format of the data, but also what it will be used for, as this will help you to build
flexibility into your program. Always design your program to be as flexible as possi-
ble. This includes designing intermediate data structures carefully and using the
UNIX filter model to remove any assumptions about input and output channels.

Know whether your data inputs or outputs are liable to change. If so, can you
design your program so that it makes no assumptions about input and output for-
mats? Can your program work out the format from the actual input data? Or can
the input and output formats be driven from configuration files? Can you have
some input into the design of these formats? If so, can you make them flexible
enough that one output format can go to more than one sink? Or can more than
one source provide data in the same format? If not, can you munge the formats in a
preprocessing program to make them all the same?

You may also need to know about the operating system that data was produced
on or will be used on, as this may affect the format of the data. Is it in ASCII,
EBCDIC or Unicode? Is binary data big-endian or little-endian? What is the line
end character sequence?

12.2.2 Know your tools

Ensure that you are as comfortable as possible with Perl and its features. Buy and
read Perl books. All Perl programmers should have read Programming Perl, The
Perl Cookbook, Mastering Regular Expressions, and Object Oriented Perl. Read the
documentation that comes with Perl—it will be more up-to-date than any book.
Know what questions are answered in perldoc perlfaq (and know their answers).
Subscribe to The Perl Journal (and consider buying a complete set of back issues).

Understand common Perl methods such as complex sorting techniques. Learn
how to benchmark your programs. Find the best performing solution to the prob-
lem (but know when your solution is fast enough).

Visit the CPAN often enough to have an overview of what is there. If a module
will solve your problem then install it and save yourself writing more code than is
necessary. If a module will almost solve your problem then consider contacting the
author and suggest improvements. Even better, supply patches.

12.2.3 Know where to go for more information

Here is a list of sources for information about Perl. Most of them have been men-
tioned at some point in the book, but I thought it would be useful to gather them
together in one place.

■ The Perl Home Page—Definitive source for all things Perl: www.perl.com
■ comp.lang.perl.misc—The most active Perl newsgroup.

Things to know 231
■ perldoc perl (and others)—The best Perl documentation installed right on
your computer.

■ Programming Perl (O’Reilly), Larry Wall, Tom Christiansen, and Jon
Orwant—The essential Perl book. Make sure you get the 3rd edition.

■ The Perl Cookbook (O’Reilly), Tom Christiansen and Nathan Torkington—
The essential Perl book (volume 2).

■ Mastering Regular Expressions (O’Reilly), Jeffrey Friedl—Everything you
ever wanted to know about regexes.

■ Object Oriented Perl (Manning), Damian Conway—Everything you ever
wanted to know about programming with objects in Perl.

■ The Perl Journal—The only Perl magazine.
■ The Perl Mongers—Friendly Perl people in your town. www.pm.org.
■ Perl Monks—A web site where Perl programmers help each other with Perl

problems. http://www.perlmonks.org.

AModules reference
232

DBI 233
In this book, we have looked at a number of Perl modules. Some of them are stan-
dard modules that come bundled with your Perl distribution; others can be
obtained from the CPAN.

In order to avoid interrupting the flow of the narrative chapters, I have not given
detailed descriptions of the modules earlier in the book. Instead, I have gathered all
of that information in this appendix. In all cases, this is not a complete reference for
the module, but should be enough to take you beyond the examples in the book.
Full references will come with the module and can be accessed by typing perldoc
<module_name> at your command line. For example, typing

perldoc DBI

will give you a full description of DBI.pm.

A.1 DBI

The following is a brief list of the most useful DBI functions.

A.1.1 Functions called on the DBI class

These functions are called via the DBI class itself.
■ DBI->available_drivers

Returns a list of the available DBD modules.
■ DBI->connect($data_source, $user, $password [, \%attributes])

Creates a connection to a database and returns a handle which you use to
carry out further actions on this connection.
■ $data_source will always start with “dbi:driver_name:”. The rest of the

string is driver dependent.
■ $user and $password are passed unchanged to the database driver. They

will usually be a valid database user and associated password.
■ \%attributes is a reference to an optional hash of attribute values. Cur-

rently supported attributes are PrintError, RaiseError, and AutoCommit.
These attributes are the keys of the hash and the associated values should
be Boolean expressions (e.g., 0 or 1). The default values are the equiva-
lents of setting the parameter to
{PrintError => 1, RaiseError => 0, AutoCommit => 1}.

■ DBI->data_sources($driver)

Returns a list of data sources available for the given driver.

234 APPENDIX

Modules reference
■ DBI->trace($level [, $file])
Controls the amount of trace information to be displayed (or written to the
optional file). Calling trace via the DBI class will enable tracing on all handles.
It is also possible to control trace levels at the handle level. The trace levels
are described in detail in the DBI documentation. Full instructions on how to
install CPAN modules can be found in perldoc perlmodinstall.

A.1.2 Attributes of the DBI class

The following attribute can be accessed through the DBI class.
■ $DBI::err, $DBI::errstr

Returns the most recent database driver error encountered. A numeric error
code is returned by $DBI::err and a text string is returned by $DBI::errstr.

A.1.3 Functions called on any DBI handle

The following functions are called via any valid DBI handle (usually a database han-
dle or a statement handle).

■ $h->err, $h->errstr
Returns the most recent database driver error encountered by this handle.
A numeric error code is returned by $h->err and a text string is returned
by $h->errstr.

■ $h->trace($level [, $file])
Similar to DBI->trace, but works at the handle level.

A.1.4 Attributes of any DBI handle

The following attributes can be accessed via any DBI handle.
■ $h->{warn}

Set to a Boolean value which determines whether warnings are raised for cer-
tain bad practices.

■ $h->{Kids}

Returns the number of statement handles that have been created from it and
not destroyed.

■ $h->{PrintError}

Set to a Boolean value which determines whether errors are printed to STDERR
rather than just returning error codes. The default for this attribute is on.

■ $h->{RaiseError}

Set to a Boolean value which determines whether errors cause the program to
die rather than just returning error codes. The default for this attribute is off.

DBI 235
■ $h->{Chopblanks}

Set to a Boolean value which determines whether trailing blanks are removed
from fixed-width character fields. The default for this value is off.

■ $h->{LongReadLen}

Determines the amount of data that a driver will read when reading a large
field from the database. These fields are often known by such names as text,
binary, or blob. The default value is 0, which means that long data fields are
not returned.

■ $h->{LongTruncOk}

Set to a Boolean value which determines whether a fetch should fail if it attempts
to fetch a long column that is larger than the current value of LongReadLen.
The default value is 0 which means that truncated fetches raise an error.

A.1.5 Functions called on a database handle

The following functions are called on a valid database handle.
■ $dbh->selectrow_array($statement [, \%attr [, @bind_values]])

Combines the prepare, execute, and fetchrow_array functions into one
function call. When it is called in a list context it returns the first row of data
returned by the query. When it is called in a scalar context it returns the first field
of the first row. See the separate functions for more details on the parameters.

■ $dbh->selectall_arrayref($statement [, \%attr

[, @bind_values]])

Combines the prepare, execute, and fetchall_arrayref functions into a
single function call. It returns a reference to an array. Each element of the
array contains a reference to an array containing the data returned. See the
separate functions for more details on the parameters.

■ $dbh->prepare($statement [, \%attr])
Prepares an SQL statement for later execution against the database and returns
a statement handle. This handle can later be used to invoke the execute func-
tion. Most database drivers will, at this point, pass the statement to the data-
base to ensure that it compiles correctly. If there is a problem, prepare will
return undef.

■ $dbh->do($statement, \%attr, @bind_values)
Prepares and executes an SQL statement. It returns the number of rows
affected (–1 if the database driver doesn’t support this) or undef if there is an
error. This is useful for executing statements that have no return sets, such as
updates or deletes.

236 APPENDIX

Modules reference
■ $dbh->commit, $dbh->rollback

Will commit or rollback the current database transaction. They are only effec-
tive if the AutoCommit attribute is set to 0.

■ $dbh->disconnect

Disconnects the database handle from the database and frees any associ-
ated memory.

■ $dbh->quote

Applies whatever transformations are required to quote dangerous characters
in a string, so that the string can be passed to the database safely. For exam-
ple, many database systems use single quotes to delimit strings so that any
apostrophes in a string can cause a syntax error. Passing the string through
the quote function will escape the apostrophe in a database-specific manner.

A.1.6 Database handle attributes

The following attribute can be accessed through a database handle.
■ $dbh->{AutoCommit}

Set to a Boolean value which determines whether or not each statement is
committed as it is executed. The default value is 1, which means that it is
impossible to roll back transactions. If you want to be able to roll back data-
base changes then you must change this attribute to 0.

A.1.7 Functions called on a statement handle

The following functions are all called via a valid statement handle.
■ $sth->bind_param($p_num, $bind_value[, $bind_type])

Used to bind a value to a placeholder in a prepared SQL statement. Place-
holders are marked with the question mark character (?). The $p_num param-
eter indicates which placeholder to use (placeholders are numbered from 1)
and the $bind_values is the actual data to use. For example:

my %data = (LON => 'London', MAN => 'Manchester', BIR => 'Birmingham');
my $sth = $dbh->prepare('insert into city (code, name) values (?, ?)');
foreach (keys %data) {
$sth->bind_param(1, $_);
$sth->bind_param(2, $data{$_});
$sth->execute;

}

■ $sth->bind_param_inout($p_num, \$bind_value, $max_len
[, $bindtype])

Like bind_param but it also enables variables to be updated by the results of
the statement. This function is often used when the SQL statement is a call to

DBI 237
a stored procedure. Note that the $bind_value must be passed as a refer-
ence to the variable to be used. The $max_len parameter is used to allocate
the correct amount of memory to store the returned value.

■ $sth->execute([@bind_values])

Executes the prepared statement on the database. If the statement is an
insert, delete, or update then when this function returns, the insert,
delete, or update will be complete. If the statement was a select statement,
then you will need to call one of the fetch functions to get access to the result
set. If any parameters are passed to this function, then bind_param will be
run for each value before the statement is executed.

■ $sth->fetchrow_arrayref, $sth->fetch
(fetch is an alias for fetchrow_arrayref)
Fetches the next row of data from the result set and returns a reference to an
array that holds the data values. Any NULL data items are returned as undef.
When there are no more rows to be returned, the function returns undef.

■ $sth->fetchrow_array

Similar to fetchrow_arrayref, except that it returns an array containing
the row data. When there are no more rows to return, fetchrow_array
returns an empty array.

■ $sth->fetchrow_hashref

Similar to fetchrow_arrayref, except that it returns a hash containing the
row data. The keys of the hash are the column names and the values are the data
items. When there are no more rows to return, this function returns undef.

■ $sth->fetchall_arrayref

Returns all of the data from a result set at one time. The function returns a
reference to an array. Each element of the array is a reference to another. Each
of these second-level arrays represents one row in the result set and each ele-
ment contains a data item. This function returns an empty array if there is no
data returned by the statement.

■ $sth->finish

Disposes of the statement handle and frees up any memory associated with it.
■ $sth->bind_col($column_number, \$var_to_bind)

Binds a column in a return set to a Perl variable. Note that you must pass a ref-
erence to the variable. This means that each time a row is fetched, the variable
is automatically updated to contain the value of the bound column in the newly
fetched row. See the code example under bind_columns for more details.

238 APPENDIX

Modules reference
■ $sth->bind_columns(@list_of_refs_to_vars)

Binds each variable in the list to a column in the result set (the first variable in
the list is bound to the first column in the result set, and so on). Note that
the list must contain references to the variables. For example:

my ($code, $name);
my $sth = $dbh->prepare(‘select code, name from city’);
$sth->execute;
$sth->bind_columns(\$code, \$name);

while ($sth->fetch) {
print “$code: $name\n";

}

A.1.8 Statement handle attributes

The following attributes can be accessed through a statement handle.
■ $sth->{NUM_OF_FIELDS}

Contains the number of fields (columns) that the statement will return.
■ $sth->{NAME}

Contains a reference to an array which contains the names of the fields that
will be returned by the statement.

■ $sth->{TYPE}

Contains a reference to an array which contains an integer for each field in
the result set. This integer indicates the data type of the field using an inter-
national standard.

■ $sth->{NULLABLE}

Contains a reference to an array which contains a value for each field that
indicates whether the field can contain NULL values. The valid values are
0 = no, 1 = yes, and 2 = don’t know.

A.2 Number::Format

The following is a brief reference to Number::Format.

A.2.1 Attributes

These are the attributes that can be passed to the new method.
■ THOUSANDS_SEP

The character which is inserted between groups of three digits. The default is
a comma.

Number::Format 239
■ DECIMAL_POINT

The character which separates the integer and fractional parts of a number.
The default is a decimal point.

■ MON_THOUSANDS_SEP

The same as THOUSANDS_SEP, but used for monetary values (formatted using
format_price). The default is a comma.

■ MON_DECIMAL_POINT

The same as DECIMAL_POINT, but used for monetary values (formatted using
format_price). The default is a decimal point.

■ INT_CURR_SYMBOL

The character(s) used to denote the currency. The default is USD .
■ DECIMAL_DIGITS

The number of decimal digits to display. The default is two.
■ DECIMAL_FILL

A Boolean flag indicating whether or not the formatter should add zeroes to
pad out decimal numbers to DECIMAL_DIGITS places. The default is off.

■ NEG_FORMAT

The format to use when displaying negative numbers. An 'x' marks where the
number should be inserted. The default is -x.

■ KILO_SUFFIX

The letter to append when format_bytes is formatting a value in kilobytes.
The default is K.

■ MEGA_SUFFIX

The letter to append when format_bytes is formatting a value in mega-
bytes. The default is M.

A.2.2 Methods

These are the methods that you can call to format your data.
■ round($number, $precision)

Rounds the given number to the given precision. If no precision is given, then
DECIMAL_DIGITS is used. A negative precision will decrease the precision
before the decimal point. This method doesn’t make use of the DECIMAL_
POINT or THOUSANDS_SEP values.

■ format_number($number, $precision, $trailing_zeroes)

Formats the given number to the given precision and pads with trailing zeroes if
$trailing_zeroes is true. If neither $precision nor $trailing_zeroes

240 APPENDIX

Modules reference
are given then the values in DECIMAL_DIGITS and DECIMAL_FILL are used
instead. This method inserts the value of THOUSANDS_SEP every three digits
and replaces the decimal point with the value of DECIMAL_POINT.

■ format_negative($number, $picture)

Formats the given number using the given picture. If a picture is not given
then the value of NEG_FORMAT is used instead. In the picture, the character
“x” should be used to mark the place where the number should go.

■ format_picture($number, $picture)

Formats the given number using the given picture. The picture should con-
tain the character # wherever you want a digit from $number to appear. If
there are fewer digits in $number than there are # characters, then the out-
put is left-padded with spaces and any occurrences of THOUSANDS_SEP to the
left of the number are removed. If there are more digits in $number than
there are # characters in $picture then all of the # characters are replaced
with * characters.

■ format_price($number, $precision)

Works like format_number, except that the values of MON_THOUSANDS_SEP
and MON_DECIMAL_POINT are used, and the value of INT_CURR_SYMBOL is
prepended to the result.

■ format_bytes($number, $precision)

Works like format_number except that numbers larger than 1024 will be
divided by 1024 and he value of KILO_SUFFIX will be appended and numbers
larger than 10242 will be divided by 10242 and the value of MEGA_SUFFIX will
be appended.

■ unformat_number($formatted_number)

The parameter $formatted_number must be a number that has been format-
ted by format_number, format_price or format_picture. The formatting
is removed and an unformatted number is returned.

A.3 Date::Calc

The most useful functions in Date::Calc include:
■ $days = Days_in_Month($year, $month)

Returns the number of days in the given month in the given year.
■ $days = Days_in_Year($year, $month)

Returns the number of days in the given year up to the end of the given month.
Thus, Days_in_Year(2000, 1) returns 31, and Days_in_Year(2000, 2)

returns 60.

Date::Calc 241
■ $is_leap = leap_year($year)

Returns 1 if the given year is a leap year and 0 if it isn’t.
■ $is_data = check_date($year, $month, $day)

Checks whether or not the given combination of year, month, and day con-
stitute a valid date. Therefore check_date(2000, 2, 29) returns true, but
check_date(2000, 2, 2001) returns false.

■ $doy = Day_of_Year($year, $month, $day)

Takes a given date in the year and returns the number of the day in the year
that the date falls. Therefore Day_of_Year(1962, 9, 7) prints 250 as Sep-
tember 7 was the 250th day of 1962.

■ $dow = Day_of_Week($year, $month, $day)

Returns the day of the week that the given date fell on. This will be 1 for
Monday and 7 for Sunday. Therefore Day_of_Week(1962, 9, 7) returns 5
as September 7, 1962, was a Friday.

■ $week = Week_Number($year, $month, $day)

Returns the week number of the year that the given date falls in. Week one is
defined as the week that January 4 falls in, so it is possible for the number to
be zero. It is also possible for the week number to be 53.

■ ($year, $month, $day) = Monday_of_Week($week, $year)

Returns the date of the first day (i.e., Monday) of the given week in the
given year.

■ ($year, $month, $day) = Nth_Weekday_of_Month_Year($year,
$month,
$dow, $n)

Returns the nth week day in the given month in the given year. For example
if you wanted to find the third Sunday (day seven of the week) in November
1999 you would call it as Nth_Weekday_of_Month_Year(1999, 11, 7, 3)
which would return the November 21, 1999.

■ $days = Delta_Days($year1, $month1, $day1,
$year2, $month2, $day2)

Calculates the number of days between the two given dates.
■ ($days, $hours, $mins, $secs) =

 Delta_DHMS($year1, $month1,$day1, $hour1, $min1, $sec1,
 $year2, $month2, $day2, $hour2, $min2, $sec2)
Returns the number of days, hours, minutes, and seconds between the two
given dates and times.

■ ($year, $month, $day) = Add_Delta_Days($year, $month,
$day, $days)

242 APPENDIX

Modules reference
Adds the given number of days to the given date and returns the resulting
date. If $days is negative then it is subtracted from the given date. There are
other functions that allow you to add days, hours, minutes, and seconds
(Add_Delta_DHMS) and years, months, and days (Add_Delta_YMD).

■ ($year, $month, $day, $hour, $min, $sec,
 $doy, $dow, $dst) =System_Clock
Returns the same set of values as Perl’s own internal localtime function,
except that the values have been converted into the values recognized by
Date::Calc. Specifically, this means the ranges of the month and day of
week have been shifted and the year has had 1900 added to it. There are
also functions to get the current date (Today), time (Now) and date and
time (Today_and_Now).

■ ($year, $month, $day) = Easter_Sunday($year)
Calculates the date of Easter Sunday in the given year.

■ $month = Decode_Month($string)
Parses the string and attempts to recognize it as a valid month name. If a
month is found then the corresponding month number is returned. There is a
similar function (Decode_Day_of_Week) for working with days of the week.

■ $string = Date_to_Text($year, $month, $day)
Returns a string which is a textual representation of the data that was passed
to the function. For example Date_to_Text(1999, 12, 25) returns Sat 25-
Dec-1999. There is also a Date_to_Text_Long function which for the same
input would return Saturday 25 December 1999.

This is only a sample of the most useful functions in the module. In particular, I
have ignored the multilanguage support in the module.

A.4 Date::Manip

This is a brief list of some of the more important functions in Date::Manip.
■ $date=ParseDateString($string)

Takes a string and attempts to parse a valid date out of it. The function will
handle just about all common date and time formats and many other surprising
ones like “today,” “tomorrow,” or in “two weeks” on Friday. This function
returns the date in a standardized format, which is YYYYMMDDHH:MM:SS. You
can convert it into a more user-friendly format using the UnixDate function
described below. This is the most useful function in the module and you should
think about installing this module simply to get access to this functionality.

Date::Manip 243
■ $date = UnixDate($date, $format)
Takes the given date (which can be in any format that is understood by
ParseDateString) and formats it using the value of $format. The format
string can handle any of the character sequences used by POSIX::strftime,
but it defines a number of new sequences as well. These are all defined in the
Date::Manip documentation.

■ $delta = ParseDelta($string)
As well as dates (which indicate a fixed point in time), Date::Manip deals
with date deltas. These are a number of years, months, days, hours, minutes,
or seconds that you can add or subtract from a date in order to get another
date. This function attempts to recognize deltas in the string that is passed to
it and returns a standardized delta in the format Y:M:W:D:H:MN:S. The func-
tion recognizes strings like +3Y 4M 2D to add three years, four months and
two days. It also recognizes more colloquial terms like “ago” (e.g., 4 years
ago) and “in” (e.g., in three weeks).

■ @dates = ParseRecur($recur, [$base, $start, $end, $flags])
Returns a list of dates for a recurring event. The rules that govern how the
event recurs are defined in $recur. The syntax is a little complex, but it is
based loosely on the syntax of a UNIX crontab file and is defined in detail in
the Date::Manip documentation.

■ $diff = Date_Cmp($date1, $date2)
Compares two dates and returns the same values as Perl’s internal Cmp and
<=> operators do for strings and numbers respectively; i.e., –1 if $date <
$date1, 0 if $date1 == $date2, and 1 if $date1 > $date2. This means that
this function can be used as a sort routine.

■ $d = DateCalc($d1, $d2)
Takes two dates (or two deltas or one of each) and performs an appropriate
calculation with them. Two deltas yield a third delta; a date and a delta yield
the result of applying the delta to the date; and two dates yield a delta which
is the time between the two dates. There are additional parameters that give
you finer control over the calculation.

■ $date = Date_GetPrev($date, $dow, $curr, $time)
Given a date, this function will calculate the previous occurrence of the given
day of the week. If the given date falls on the given day of the week, then the
behavior depends on the setting of the $curr flag. If $curr is non-zero then
the current date is returned. If $curr is zero then the date a week earlier is
returned. If the optional parameter $time is passed to the function, then the

244 APPENDIX

Modules reference
time in the returned date is set to that value. There is also a very similar
Date_GetNext function.

■ $day = Date_DayOfWeek($month, $day, $year)
Returns the day of the week that the given date fell on (1 for Monday, 7 for
Sunday). Note the nonstandard order of the arguments to this function.

■ $day = Date_DayOfYear($month, $day, $year)
Returns the day of the year (1 to 366) that the given date falls on. Note the
nonstandard order of the arguments to this function.

■ $days = Date_DaysInYear($year)
Returns the number of days in the given year.

■ $days = Date_DaysInMonth($month, $year)
Returns the number of days in the given month in the given year.

■ $flag = Date_LeapYear($year)
Returns 1 if the given year is a leap year and 0 otherwise.

■ $day = Date_DaySuffix($day)
Calculates the suffix that should be applied to the day number and appends it
to the number; e.g., Date_DaySuffix returns “1st.”

This only scratches the surface of what Date::Manip is capable of. In particular,
it has very good support for working with business days and holidays and allows
you to configure it to work with local holidays.

A.5 LWP::Simple

In chapter 9 we took a brief look at the LWP::Simple module. Here is a slightly less
brief look at the functions that this module provides. For more information on
using this module see the lwpcook manual page which comes with the LWP bundle
of modules.

■ $page = get($url)
Returns the document which is found at the given URL. It returns only the
document without any of the HTTP headers. Returns undef if the request fails.

■ ($content_type, $document_len, $mod_time, $expiry_time,
 $server) = head($url)
Returns various information from the HTTP header that is returned when the
given URL is requested. Returns an empty list if the request fails.

■ $http_code = getprint($url)
Gets the document from the given URL and prints it to STDOUT. If the

HTML::Parser 245
request fails, it prints the status code and error message. The return value is
the HTTP response code.

■ $http_code = getstore($url, $file)
Gets the document from the given URL and stores it in the given file. The
return value is the HTTP response code.

■ $http_response = mirror($url, $file)
Mirrors the document at the given URL into the given file. If the document
hasn’t changed since the file was created then no action is taken. Returns the
HTTP response code.

A.6 HTML::Parser

Here is a brief guide to the methods of the HTML::Parser object. As I mentioned
briefly in chapter 9, this describes version 3.x of HTML::Parser. In older versions
you had to subclass HTML::Parser in order to do any useful work with it. Unfortu-
nately, as I write this, the version of HTML::Parser available from the ActiveState
module repository for use with ActivePerl is still a 2.x version.1 For further detail on
using an older version, see the documentation that comes with the module.

■ $parser = HTML::Parser->new(%options_and_handlers)
Creates an instance of the HTML parser object. For details of the various
options and handlers that can be passed to this method, see the description
later in this section. Returns the new parser object or undef on failure.

■ $parser->parse($html)

Parses a piece of HTML text. Can be called multiple times.
■ $parser->eof

Tells the parser the you have finished calling parse.
■ $parser->parse_file($file_name)

Parses a file containing HTML.
■ $parser->strict_comment($boolean)

Many popular browsers (including Netscape Navigator and Microsoft Inter-
net Explorer) parse HTML comments in a way which is subtly different than
the HTML standard. Calling this function and passing it a true value will
switch on strict (i.e., in line with the HTML specification) comment handling.

1 As I was completing the final edits of this book, there were some moves towards correcting this discrepancy.

246 APPENDIX

Modules reference
■ $parser->strict_names($boolean)

This method has similar functionality to strict_comment, but deals with
certain browsers’ ability to understand broken tag and attribute names.

■ $parser->xml_mode($boolean)

When xml_mode is switched on, the parser handles certain XML constructs
which aren’t allowed in HTML. These include combined start and end tags
(e.g.,
) and XML processing instructions.

■ $parser->handler(%hash)

Allows you to change handler functions. The arguments are similar to those
in the handler arguments optionally passed to the new method. These are dis-
cussed in the next section.

A.6.1 Handlers

To do anything useful with HTML::Parser, you need to define handlers which are
called when the parser encounters certain constructs in the HTML document. You
can define handlers for the events shown in table A.1.

Each of these handlers can be defined in two ways. Either you can pass details of
the handler to the new method or you can use the handler method after creating
the parser object, but before parsing the document. Here are examples of both uses.

my $parser = HTML::Parser->new(start_h => [\&start, 'tagname,attr']);

$parser->handler(start => [\&start, 'tagname,attr']);

In both examples we have set the start handler to be a function called start which
must be defined somewhere within our program. The only difference between the
two versions is that when using new, the event name (i.e., start) must have the
string _h appended to it. In both examples the actual subroutine to be called is

Table A.1 HTML::Parser handlers

Handler Called when …

declaration an HTML DOCTYPE declaration is found

start the start of an HTML tag is found

end the end of an HTML tag is found

text plain text is found

comment an HTML comment is found

process a processing instruction is found

HTML::LinkExtor 247
defined in a two-element array. The first element of the array is a reference to the
subroutine to be called and the second element is a string defining the arguments
which the subroutine expects. The various values that this string can contain are
listed in table A.2.

A.7 HTML::LinkExtor

HTML::LinkExtor is a subclass of HTML::Parser and, therefore, all of that class’s
methods are available. Here is a list of extra methods together with methods that
have a different interface.

Table A.2 Argument specification strings

Name Description Data type

self The current parser object Reference to the object

tokens The list of tokens which makes up the current event Reference to an array

tokenpos A list of the positions of the tokens in the original text. Each token
has two numbers; the first is the offset of the start of the token,
and the second is the length of the token.

Reference to an array

token0 The text of the first token (this is the same as $tokens->[0]) Scalar value

tagname The name of the current tag Scalar value

attr The name and values of the attributes of the current tag Reference to a hash

attrseq A list of the names of the attributes of the current tag in the order
that they appear in the original document

Reference to an array

text The source text for this event Scalar value

dtest The same as “text” but with any HTML entities (e.g., &) decoded Scalar value

is_cdata True if event is in a CDATA section Scalar value

offset The offset (in bytes) of the start of the current event from the start
of the HTML document

Scalar value

length Length (in bytes) of the original text which constitutes the event Scalar value

event The name of the current event Scalar value

line The number of the line in the document where this event started Scalar value

' ' Any literal string is passed to the handler unchanged Scalar value

undef An undef value Scalar value

248 APPENDIX

Modules reference
■ $parser = $HTML::LinkExtor->new($callback, $base)
Creates an HTML::LinkExtor object. Both of its parameters are optional.
The first parameter is a reference to a function which will be called each time
a link is found in the document being parsed. This function will be called
with the tag name in lower case as the first argument followed by a list of
attributes and values. Only link attributes will be included. The second
parameter is a base URL used to convert relative URLs to absolute ones (you
will need the URI::URL module installed in order to use this functionality).

■ @links = $parser->links
Having parsed a document, this method returns a list of all of the links found.
Each element of the array returned is a reference to another array. This sec-
ond level array contains the same values as would have been passed to the
links callback if you had defined one in the call to new. If you do provide a
link callback function, then links will return an empty array.

A.8 HTML::TokeParser

HTML::TokeParser is another subclass of HTML::Parser; however, it is not rec-
ommended that you call any of the methods from the superclass. You should only
use the methods defined by HTML::TokeParser.

■ $parser = HTML::TokeParser->new($document)
Creates an HTML::TokeParser object. The single parameter defines the doc-
ument to be parsed in one of a number of possible ways. If the method is
passed a plain scalar then it is taken as the name of a file to open and read. If
the method is passed a reference to a scalar then it assumes that the scalar
contains the entire text of the document. If it is passed any other type of
object (for example, a file handle) then it assumes that it can read data from
the object as it is required.

■ $token = $parser->get_token
Returns the next token from the document (or undef when there are no
more tokens). A token consists of a reference to an array. The first element in
the array is a character indicating the type of the token (S for start tag, E for
end tag, T for text, C for comment, and D for a declaration). The remaining
elements are the same as the parameters to the appropriate method of the
HTML::Parser object.

■ $parser->unget_token

You can’t know what kind of token you will get next until you have received
it. If you find that you don’t need it yet, you can call this method to return it
to the token stack to be given to you again the next time you call get_token.

HTML::TreeBuilder 249
■ $tag = $parser->get_tag($tag)
Returns the next start or end tag in the document. The parameter is optional
and, if it is used, the method will return the next tag of the given type. The
method returns undef if no more tokens (or no more tokens of the given
type) are found. The tag is returned as a reference to an array. The elements
of the array are similar to the elements in the array returned from the
get_token method, but the character indicating the token type is missing
and the name of an end tag will have a / character prepended.

■ $text = $parser->get_text($endtag)
Returns all text at the current position of the document. If the optional
parameter is omitted it returns the text up to the next tag. If an end tag is
given then it returns all text up to the next end tag of the given type.

■ $text = $parser->get_trimmed_text($endtag)
Works in the same way as the get_text method, except that any sequences
of white space characters are collapsed to a single space, and any leading or
trailing white space is removed.

A.9 HTML::TreeBuilder

HTML::TreeBuilder inherits all of the methods from HTML::Parser and HTML::
Element. It builds an HTML parse tree when each node is an HTML::Element object.
It only has a few methods of its own, and here is a list of them.

■ $parser->implicit_tags($boolean)

If the boolean value is true then the parser will try to deduce where missing
elements and tags should be.

■ $parser->implicit_body_p_tag($boolean)

If the boolean value is true, the parser will force there to be a <p> element
surrounding any elements which should not be immediately contained within
a <body> tag.

■ $parser->ignore_unknown($boolean)

Controls what the parser does with unknown HTML tags. If the boolean
value is true then they are simply ignored.

■ $parser->ignore_text($boolean)

If the boolean value is true then the parser will not represent any of the text
of the document within the parser tree. This can be used (and save a lot of
storage space) if you are only interested in the structure of the document.

250 APPENDIX

Modules reference
■ $parser->ignore_ignorable_whitespace($boolean)

If the boolean value is true then the parser will not build nodes for white
space which can be ignored without affecting the structure of the document.

■ $parser->p_strict($boolean)

If the boolean value is true then the parser will be very strict about the type
of elements that can be contained within a <p> element and will insert a clos-
ing </p> tag if it is necessary.

■ $parser->store_comments($boolean),

$parser->store_declarations($boolean),

$parser->store_pis($boolean)

These control whether or not comments, declarations, and processing
instructions are stored in the parser tree.

■ $parser->warn($boolean)

Controls whether or not warnings are displayed when syntax errors are found
in the HTML document.

A.10 XML::Parser

XML::Parser is one of the most complex modules that is covered in this book.
Here is a brief reference to its most commonly used methods.

■ $parser = XML::Parser->new(Style => $style,
Handlers => \%handlers,
Pkg => $package)

Creates an XML::Parser object. It takes a number of optional named param-
eters. The Style parameter indicates which of a number of canned parsing
styles you would like to use. Table A.3 lists the available styles along with the
results of choosing a particular style.

Table A.3 XML::Parser Styles

Style
name

Results

Debug Prints out a stylized version of the document outline.

Subs When the start of an XML tag is found, the parser calls a subroutine with the same name as
the tag. When the end of an XML tag is found, the parser calls a subroutine with the same
names as the tag with an underscore character prepended. Both of these subroutines are
presumed to exist in the package denoted by the Pkg parameter. The parameters passed to
these subroutines are the same as those passed to the Start and End handler routines.

XML::Parser 251
The Handlers parameter is a reference to a hash. The keys of this hash are the
names of the events that the parser triggers while parsing the document and the val-
ues are references to subroutines which are called when the events are triggered.
The subroutines are assumed to be in the package defined by the Pkg parameter.
Table A.4 lists the various types of handlers. The first parameter to each of these
handlers is a reference to the Expat object which XML::Parser creates to actually
handle the parsing. This object has a number of its own methods which you can use
to gain even more precise control over the parsing process. For details of these, see
the manual page for XML::Parser::Expat.

Tree The parse method will return a parse tree representing the document. Each node is repre-
sented by a reference to a two-element array. The first element in the list is either the tag
name or “0” if it is a text node. The second element is the content of the tag. The content is
a reference to another array. The first element of this array is a reference to a (possibly empty)
hash containing attribute/value pairs. The rest of this array is made up of pair of elements
representing the type and content of the contained nodes. See section 9.2.3 for examples.

Objects The parse method returns a parse tree representing the object. Each node in the tree is a
hash which has been blessed into an object. The object type names are created by append-
ing the type of each tag to the value of the Pkg parameter followed by ::. A text node is
blessed into the class ::Characters. Each node will have a kids attribute which will be a
reference to an array containing each of the node’s children.

Stream This style works in a manner similar to the Subs style. Whenever the parser finds particular
XML objects, it calls various subroutines. These subroutines are all assumed to exist in the
package denoted by the Pkg parameter. The subroutines are called StartDocument,
StartTag, EndTag, Text, PI, and EndDocument. The only one of these names which
doesn’t make it obvious when the subroutine is called is PI. This is called when the parser
encounters a processing instruction in the document.

Table A.4 XML::Parser Handlers

Handler When called Subroutine parameters

Init Before the parser starts processing the document Reference to the Expat object

Final After the parser finishes processing the document Reference to the Expat object

Start When the parser finds the start of a tag Reference to the Expat object
Name of the tag found
List of name/value pairs for
the attributes

Table A.3 XML::Parser Styles (continued)

Style
name

Results

252 APPENDIX

Modules reference
End When the parser finds the end of a tag Reference to the Expat Object

Char When the parser finds character data Reference to the Expat Object
The character string

Proc When the parser finds a processing instruction Reference to the Expat Object
The name of the PI target
The PI data

Comment When the parser finds a comment Reference to the Expat Object
The comment data

CdataStart When the parser finds the start of a CDATA section Reference to the Expat Object

CdataEnd When the parser finds the end of a CDATA section Reference to the Expat Object

Default When the parser finds any data that doesn’t have an
assigned handler

Reference to the Expat Object
The data string

Unparsed When the parser finds an unparsed entity declaration Reference to the Expat Object
Name of the Entity
Base URL to use when resolving the
address
The system ID
The public ID

Notation When the parser finds a notation declaration Reference to the Expat Object
Name of the Notation
Base URL to use when resolving the
address
The system ID
The public ID

ExternEnt When the parser finds an external entity declaration Reference to the Expat Object.
Base URL to use when resolving the
address
The system ID.
The public ID.

Entity When the parser finds an entity declaration Reference to the Expat Object
Name of the Entity
The value of the Entity
The system ID
The public ID
The notation for the entity

Element When the parser finds an element declaration Reference to the Expat Object
Name of the Element
The Content Model

Table A.4 XML::Parser Handlers (continued)

Handler When called Subroutine parameters

XML::Parser 253
Pkg is the name of a package. All handlers are assumed to be in this package and
all styles which rely on user-defined subroutines also search for them in this pack-
age. If this parameter is not given then the default package name is main.

This method also takes a number of other optional parameters, all of which are passed
straight on to the Expat object. For details see the manual page for XML::Parser.

■ $parser->parse($source)

Parses the document. The $source parameter should either be the entire
document in a scalar variable or a reference to an open IO::Handle object.
The return value varies depending on the style chosen.

■ $parser->parse_file($filename)

Opens the given file and parses the contents. The return value varies accord-
ing to the style chosen.

■ $parser->setHandlers(%handlers)

Overrides the current set of handlers with a new set. The parameters are inter-
preted as a hash in exactly the same format as the one passed to new. By includ-
ing an empty string or undef, the associated handler can be switched off.

Attlist When the parser finds an attribute declaration Reference to the Expat Object
Name of the Element
Name of the Attribute
The Attribute Type
Default Value
String indicating whether the
attribute is fixed

Doctype When the parser finds a DocType declaration Reference to the Expat Object
Name of the Document Type
System ID
Public ID
The Internal Subset

XMLDecl When the parser finds an XML declaration Reference to the Expat Object
Version of XML
Document Encoding
String indication whether or not the
DTD is standalone

Table A.4 XML::Parser Handlers (continued)

Handler When called Subroutine parameters

BEssential Perl
254

Running Perl 255
Throughout this book I have assumed that you have a certain level of knowledge of
Perl and have tried to explain everything that I have used beyond that level. In this
appendix, I’ll give a brief overview of the level of Perl that I’ve been aiming at. Note
that this is not intended to be a complete introduction to Perl. For that you would
be better looking at Learning Perl by Randal Schwartz and Tom Christiansen
(O’Reilly); Elements of Programming with Perl by Andrew Johnson (Manning), or
Perl: The Programmer’s Companion by Nigel Chapman (Wiley).

B.1 Running Perl

There are a number of ways to achieve most things in Perl and running Perl scripts
is no exception. In most cases you will write your Perl code using a text editor and
save it to a file. Many people like to give Perl program files the extension .pl, but
this usually isn’t necessary.1

Under most modern operating systems the command interpreter works out how
to run a script by parsing the first line of the script. If the first line looks like

#!/path/to/script/interpreter

then the program defined in this line will be called and your program file will be
passed to it as input. In the case of Perl, this means that your Perl program files
should usually start with the line

#!/usr/bin/perl

(although the exact path to the Perl interpreter will vary from system to system).
Having saved your program (and made the file executable if your operating sys-

tem requires it) you can run it by typing the name of the file on your command line;
e.g., if your script is in a file called myscript.pl you can run it by typing

myscript.pl

at the command line.
An alternative would be to call the Perl interpreter directly, passing it the name of

your script like this:

perl myscript.pl

There are a number of command line options that you can either put on the com-
mand line or on the interpreter line in the program file. The most useful include:

1 I say “usually” because Windows uses the extension of the file to determine how to run it. Therefore, if
you’re developing Perl under Windows, you’ll need the .pl extension.

256 APPENDIX

Essential Perl
■ -w Asks Perl to notify you when it comes across a number of unsafe pro-
gramming practices in your program. These include using a variable before it
is initialized and attempting to write to a file handle that is opened for read-
ing. These warnings are usually very useful and there is no good reason not to
use this option for every Perl program that you write.

■ -T Turns on Perl’s “taint” mode. In this mode all input from an external
source is untrusted by default. You can make use of such input only by explic-
itly cleaning it first. This is particularly useful if you are writing a CGI script.
For more details see the perlsec manual page.

■ -c Checks a script for syntax errors without executing it.
■ -d Runs the script using Perl’s built-in debugger.

There is another way that you can pass Perl code to the Perl interpreter. This is to
use the -e command line option. A text string following this option is assumed to
be code to be executed, for example:

perl -e 'print "Hello World\n";'

will print the string “Hello World” to the console.
It may seem that this feature wouldn’t be very useful as the only scripts that you

can write like this would be very small; however, Perl has a number of other com-
mand line options that can combine with -e to create surprisingly complex scripts.
Details of these options are given in chapter 3.

All of the information that you could ever need about running Perl can be found
in the perlrun manual page.

B.2 Variables and data types

Perl supports a number of different data types. Each data type can be stored in its
own type of variable. Unlike languages such as C or Pascal, Perl variables are not
strongly typed. This means that a variable that contains a number can just as easily
be used as a string without having to carry out any conversions.

The main data types that you will come across in Perl are scalars, arrays, and
hashes. More complex data structures can be built using a combination of these
types. The type of a Perl variable can be determined by the symbol that precedes the
variable name. Scalars use $, arrays use @, and hashes use %.

B.2.1 Scalars

A scalar variable holds a single item of data. This data can be either a number or a
string (or a reference, but we’ll come to that later). Here are some examples of
assigning values to a scalar variable:

Variables and data types 257
$text = 'Hello World';
$count = 100;
$count = 'one hundred';

As you can see from the last two examples, the same scalar variable can contain both
text and numbers. If a variable holds a number and you use it in a context where
text is more useful, then Perl automatically makes the translation for you.

$number = 1;
$text = "$number ring to rule them all";

After running this code, $text would contain the string “1 ring to rule them all”.
This also works the other way around.2

$number = '100';
$big_number = $number * 2; # $big_number now contains the value 200.

Notice that we have used two different types of quotes to delimit strings in the previ-
ous examples. If a string is in double quotes and it contains variable names, then
these variables are replaced by their values in the final string. If the string is in single
quotes then variable expansion does not take place. There are also a number of char-
acter sequences which are expanded to special characters within double quotes. These
include \n for a newline character, \t for a tab, and \x1F for a character whose ASCII
code is 1F in hex. The full set of these escape sequences is in perldoc perldata.

B.2.2 Arrays

An array contains an ordered list of scalar values. Once again the scalar values can be
of any type. Here are some examples of array assignment:

@empty = ();
@hobbits = ('Bilbo', 'Frodo', 'Merry');
@elves = ('Elrond', 'Legolas', 'Galadriel');
@people = (@hobbits, @elves);
($council, $fellow, $mirror) = @elves;

Notice that when assigning two arrays to a third (as in the fourth example above)
the result array is an array consisting of six elements, not an array with two elements
each of which is another array. Remember that the elements of an array can only be
scalars. The final example shows how you can use list assignment to extract data
from an array.

You can access the individual elements of an array using syntax like this:

$array[0]

2 You can always turn a number into a string, but it’s harder to turn most strings into numbers.

258 APPENDIX

Essential Perl
You can use this syntax to both get and set the value of an individual array element.

$hero = $hobbits[0];
$hobbits[2] = 'Pippin';

Notice that we use $ rather than @ to denote this value. This is because a single ele-
ment of an array is a scalar value, not an array value.

If you assign a value to an element outside the current array index range, then
the array is automatically extended.

$hobbits[3] = 'Merry';
$hobbits[100] = 'Sam';

In that last example, all of the elements between 4 and 99 also magically sprang into
existence, and they all contain the value undef.

You can use negative index values to access array values from the end of the array.

$gardener = $hobbits[-1]; # $gardener now contains 'Sam'

You can use an array slice to access a number of elements of an array at once. In this
case the result is another array.

@ring_holders = @hobbits[0, 1];

You can also use syntax indicating a range of values:

@ring_holders = @hobbits[0 .. 1];

or even another array which contains the indexes of the values that you need.

@index = (0, 1);
@ring_holders = @hobbits[@index];

You can combine different types of values within the same assignment.

@ring_holders = ('Smeagol', @hobbits[0, 1], 'Sam');

If you assign an array to a scalar value, you will get the number of elements in the array.

$count = @ring_holders; # $count is now 4

There is a subtle difference between an array and a list (which is the set of values
that an array contains). Notably, assigning a list to a scalar will give you the value of
the rightmost element in the list. This often confuses newcomers to Perl.

$count = @ring_holders; # As before, $count is 4
$last = ('Bilbo', 'Frodo'); # $last contains 'Frodo'

You can also get the index of the last element of an array using the syntax:

$#array

There are a number of functions that can be used to process a list.

Variables and data types 259
■ push @array, list—Adds the elements of list to the end of @array.
■ pop @array—Removes and returns the last element of @array.
■ shift @array—Removes and returns the first element of @array.
■ unshift @array, list—Adds the elements of list to the front of @array.
■ splice @array, $offset, $length, list—Removes and returns $length

elements from @array starting at element $offset and replaces them with
the elements of list. If list is omitted then the removed elements are sim-
ply deleted. If $length is omitted then everything from $offset to the end
of @array is removed.

Two other very useful list processing functions are map and grep. map is passed a
block of code and a list and returns the list created by running the given code on
each element of the list in turn. Within the code block, the element being processed
is stored in $_. For example, to create a list of squares, you could write code like this:

@squares = map { $_ * $_ } @numbers;

If @numbers contains the integers from 1 to 10, then @square will end up contain-
ing the squares of those integers from 1 to 100. It doesn’t have to be true that each
iteration only generates one element in the new list; for example, the code

@squares = map { $_, $_ * $_ } @numbers;

generates a list wherein each integer is followed by its square.
grep is also passed a block of code and a list. It executes the block of code for

each element on the list in turn, and if the code returns a true value, then grep adds
the original element to its return list. The list returned, therefore, contains all the
elements wherein the code evaluated to true. For example, given a list containing
random integers,

@odds = grep { $_ % 2 } @ints;

will put all of the odd values into the array @odds.

B.2.3 Hashes

Hashes (or, as they were previously known, associative arrays) provide a simple way to
implement lookup tables in Perl. They associate a value with a text key. You assign
values to a hash in much the same way as you do to an array. Here are some examples:

%rings = (); # Creates an empty hash
%rings = ('elves', 3, 'dwarves', 7);
%rings = (elves => 3, dwarves => 7); # Another way to do the same thing
$rings{men} = 9;
$rings{great} = 1;

260 APPENDIX

Essential Perl
Notice that using the arrow operator (=>) has two advantages over the comma. It
makes the assignment easier to understand and it automatically quotes the value to its
left. Also notice that hashes use different brackets to access individual elements and
because, like arrays, each element is a scalar, it is denoted with a $ rather than a %.

You can access the complete set of keys in a hash using the function keys, which
returns a list of the hash keys.

@ring_types = keys %rings; # @ring_types is now ('men', 'great',
'dwarves', 'elves')

There is a similar function for values.

@ring_counts = values %rings; # @ring_counts is now (9, 1, 7, 3)

Notice that neither keys nor values is guaranteed to return the data in the same
order as it was added to the hash. They are, however, guaranteed to return the
data in the same order (assuming that you haven’t changed the hash between the
two calls).

There is a third function in this set called each which returns a two-element list
containing one key from the hash together with its associated value. Subsequent
calls to each will return another key/value pair until all pairs have been returned, at
which point an empty array is returned. This allows you to write code like this:

while (($type, $count) = each %rings)) {
print "$count $type ring(s)\n";

}

You can also call each in a scalar context in which case it iterates over the keys in
the hash.

The most efficient way to get the number of key/value pairs in a hash is to assign
the return value from either keys or values to a scalar variable.3

$ring_types = keys %rings; # $ring_types is now 4

You can access parts of a hash using a hash slice which is very similar to the array slice
discussed earlier.

@minor_rings_types = ('elves', 'dwarves', 'men');
@minor_rings{@minor_rings_types} = @rings{@minor_rings_types};

creates a new hash called %minor rings containing
elves => 3
dwarves => 7
men => 9

3 Note that this example also demonstrates that you can have variables of different types with the same
name. The scalar $ring_types in this example has no connection at all with the array @ring_types in the
earlier example.

Operators 261
Note, once again, that a hash slice returns a list and therefore is prefixed with @. The
key list, however, is still delimited with { and }.

As a hash can be given values using a list, it is possible to use the map function to
turn a list into a hash. For example, the following code creates a hash where the
keys are numbers and the values are their squares.

%squares = map { $_, $_ * $_ } @numbers;

B.2.4 More information

For more information about Perl data types, see the perldata manual page.

B.3 Operators

Perl has all of the operators that you will be familiar with from other languages—
and a few more besides. You can get a complete list of all of Perl’s operators in the
perlop manual page. Let’s look at some of the operators in more detail.

B.3.1 Mathematical operators

The operators +, -, *, and / will add, subtract, multiply, and divide their two oper-
ands respectively. % will find the modulus of the two operands (that is the remainder
when integer division is carried out).

Unary minus (-) reverses the sign of its single operand.
Unary increment (++) and decrement (--) operators will add or subtract one

from their operands. These operators are available both in prefix and postfix ver-
sions. Both versions increment or decrement the operand, but the prefix versions
return the result after the operation and the postfix versions return the results
before the operation.

The exponentiation operator (**) raises its left-hand operand to the power given
by its right operand.

All of the binary mathematical operators are available in an assignment version.
For example,

$x += 5;

is exactly equivalent to writing

$x = $x + 5;

Similar to the mathematical operators, but working instead on strings, the concate-
nation operator (.) joins two strings and the string multiplication operator (x)
returns a string made of its left operand repeated the number of times given by its
right operand. For example,

262 APPENDIX

Essential Perl
$y = 'hello' x 3;

results in $y having the value “hellohellohello”.
In an array context, if the left operand is a list, then this operator acts as a list rep-

etition operator. For example,

@a = (0) x 100;

makes a list with 100 elements, each of which contains the number 0, and then
assigns it to @a.

B.3.2 Logical operators

Perl distinguishes between logical operators for use on numbers and logical opera-
tors for use on strings. The former set uses the mathematical symbols <, <=, ==, !=,
>=, and > for less than, less than or equal to, equal to, not equal to, greater than or
equal to, and greater than, respectively, whereas the string logical operators use lt,
le, eq, ne, ge, and gt for the same operations. All of these operators return 1 if
their operands satisfy the relationship and 0 if they don’t. In addition, there are two
comparison operators <=> (for numbers) and cmp (for strings) which return –1, 0,
or 1 depending on whether their first operand is less than, equal to, or greater than
their second operand.

For joining logical comparisons, Perl has the usual set of operators, but once
again it has two sets. The first set uses && for conjunction and || for disjunction.
These operators have very high precedence. The second set uses the words and and
or. This set has very low precedence. The difference is best explained with an exam-
ple. When opening a file, it is very common in Perl to write something like this:

open DATA, 'file.dat' or die "Can't open file\n";

Notice that we have omitted the parentheses around the arguments to open.
Because of the low precedence of or, this code is interpreted as if we had written

open (DATA, 'file.dat') or die "Can't open file\n";

which is what we wanted. If we had used the high precedence version of the opera-
tor instead, like this

open DATA, 'file.dat' || die "Can't open file\n";

it would have bound more tightly than the comma that builds up the list of arguments
to open. Our code would, therefore, have been interpreted as though we had written

open DATA, ('file.dat' || die "Can't open file\n");

which doesn’t achieve the correct result.

Flow of control 263
The previous example also demonstrates another feature of Perl’s logical opera-
tors—they are short-circuiting. That is to say they only execute enough of the terms
to know what the overall result will be. In the case of the open example, if the call
to open is successful, then the left-hand side of the operator is true, which means
that the whole expression is true (as an or operation is true if either of its operands
is true). The right-hand side (the call to die) is therefore not called. If the call to
open fails, then the left-hand side of the operator is false. The right-hand side must
therefore be executed in order to ascertain what the result is. This leads to a very
common idiom in Perl in which you will often see code like

execute_code() or handle_error();

Unusually, the logical operators are also available in assignment versions. The “or-
equals” operator is the most commonly used of these. It is used in code like

$value ||= 'default';

This can be expanded into

$value = $value || 'default';

from which it is obvious that the code sets $value to a default value if it doesn’t
already have a value.

Perl also has bitwise logical operators for and (&) or (|), exclusive or (^), and nega-
tion (~). These work on the binary representation of their two operands and, there-
fore, don’t always give intuitively correct answers (for example ~1 isn’t equal to 0).
There are also left (<<) and right (>>) shift operators for manipulating binary num-
bers. One use for these is to quickly multiply or divide numbers by a power of two.

B.4 Flow of control

Perl has all of the standard flow of control constructs that are familiar from other
languages, but many of them have interesting variations.

B.4.1 Conditional execution

The if statement executes a piece of code only if an expression is true.

if ($location eq 'The Shire') {
$safety = 1;

}

The statement can be extended with an else clause.

if ($location eq 'The Shire') {
$safety++;

} else {

264 APPENDIX

Essential Perl
$safety--;
}

And further extended with elsif clauses.

if ($location eq 'The Shire') {
$safety++;

} elsif ($location eq 'Mordor') {
$safety = 0;

} else {
$safety--;

}

Perl also has an unless statement which is logically opposite the if statement—it
executes unless the condition is true.

unless ($location eq 'The Shire') {
$panic = 1;

}

Both the if and unless keywords can be used as statement modifiers. This can
often make for more readable code.

$damage *= 2 if $name eq 'Aragorn';
$dexterity++ unless $name eq 'Sam';

B.4.2 Loops

Perl has a number of looping constructs to execute a piece of code a number of times.

for loop
The for loop has the syntax:

for (initialisation; test; increment) {
statements;

}

For example,

for ($x = 1; $x <= 10; ++$x) {
print "$x squared is ", $x * $x, "\n";

}

The loop will execute until the test returns a false value. It is probably true to say
that this loop is very rarely used in Perl, as the foreach loop discussed in the next
section is far more flexible.

Flow of control 265
foreach loop
The foreach loop has the syntax:

foreach var (list) {
statements;

}

For example, the previous example can be rewritten as:

foreach my $x (1 .. 10) {
print "$x squared is ", $x * $x, "\n";

}

which, to many people, is easier to understand as it is less complex. You can even omit
the loop variable, in which case each element in the list in turn is accessible as $_.

foreach (1 .. 10) {
print "$_ squared is ", $_ * $_, "\n";

}

This loop will execute until each element of the list has been processed. It is often
used for iterating across the contents of an array like this:

foreach (@data) {
process($_);

}

while loop
The while loop has the syntax:

while (condition) {
statements

}

For example,

while ($data = get_data()) {
process($data);

}

This loop will execute until the condition evaluates to a false value.

Loop control
There are three keywords which can be used to alter the normal execution of a
loop: next, last, and redo.

next immediately starts the next iteration of the loop, starting with the evalua-
tion of any test which controls whether the loop should continue to be executed.
For example, to ignore empty elements of an array you can write code like this:

266 APPENDIX

Essential Perl
foreach my $datum (@data) {
next unless $datum;

process($datum);
}

redo also returns to the start of the loop block, but does not execute any test or
iteration code. Suppose you were prompting the user for ten pieces of data, none of
which could be blank. You could write code like this:

foreach my $input (1 .. 10) {
print "\n$input> ";
$_; = <STDIN>;

redo unless $_'
}

last immediately exits the loop and continues execution on the statement follow-
ing the end of the loop. If you were processing data, but wanted to stop when you
reached a number that was negative, you could write code like this:

foreach my $datum (@data) {
last if $datum < 0;

process($datum);
}

All of these keywords act on the innermost enclosing loop by default. If this isn’t what
you want then you can put a label in front of the loop keyword (for, foreach, or
while) and refer to it in the next, redo, or last command. For example, if you were
processing lines and words from a document, you could write something like this:

LINE:
foreach my $line (getlines()) {
WORD:
foreach $word (getwords($line)) {
last WORD if $word eq 'next';
last LINE if $word eq 'end';

process($word);
}

}

B.5 Subroutines

Subroutines are defined using the keyword sub like this:

sub gollum {
print "We hatesss it forever!\n";

}

and are called like this:

Subroutines 267
&gollum;

or like this

gollum();

or (if the definition of the subroutine has already been seen by the compiler) like this:

gollum;

Within a subroutine, the parameters are available in the special array @_. These
parameters are passed by reference, so changing this array will alter the values of the
variables in the calling code.4 To simulate parameter passing by value, it is usual to
assign the parameters to local variables within the subroutine like this:

sub example {
my ($arg1, $arg2, $arg4) = @_;

Do stuff with $arg1, $arg2 and $arg3
}

Any arrays or hashes that are passed into subroutines this way are flattened into one
array. Therefore if you try to write code like this:

Subroutine to print one element of an array
N.B. This code doesn't work.
sub element {

my (@arr, $x) = @_;

print $arr[$x];
}

my @array = (1 .. 10);
element(@array, 4);

it won’t work because, within the subroutine, the assignment to @arr doesn’t know
when to stop pulling elements from @_ and will, therefore, take all of @_, leaving
nothing to go into $x which therefore ends up containing the undef value.

If you were to pass the parameters the other way round like this:

Subroutine to print one element of an array
N.B. Better than the previous version.
sub element {

my ($x, @arr) = @_;

print $arr[$x];
}

my @array = (1 .. 10);
element(4, @array);

4 This isn’t strictly true, but it’s true enough to be a reasonable working hypothesis. For the full gory details
see perldoc perlsub.

268 APPENDIX

Essential Perl
it would work, as the assignment to $x would pull one element off of @_ leaving the
rest to go into @arr. An even better way, however, is to use references, as we’ll see later.

A subroutine returns the value of the last statement that it executes, although
you can also use the return function to explicitly return a value from any point in
the subroutine. The return value can be a scalar or a list. Perl even supplies a func-
tion called wantarray which tells you whether your subroutine was called in scalar
or array context so that you can adjust your return value accordingly.

More information about creating and calling subroutines can be found in the
perlsub manual page.

B.6 References

References are the key to building complex data structures in Perl and, as such, are
very important for data munging. They work somewhat like pointers in languages
like C, but are more useful. They know, for example, the type of the object that they
are pointing at. A reference is a scalar value and can, therefore, be stored in a stan-
dard scalar variable.

B.6.1 Creating references

You can create a reference to a variable in Perl by putting a backslash character (\)
in front of the variable name. For example:

$scalar = 'A scalar';
@array = ('An', 'Array');
%hash = (type => 'Hash);

$scalar_ref = \$scalar;
$array_ref = \@array;
$hash_ref = \%hash;

Sometimes you’d like a reference to an array or a hash, but you don’t wish to go to
the bother of creating a variable. In these cases, you can create an anonymous array
or hash like this:

$array_ref = ['An', 'Array'];
$hash_ref = {type => 'Hash'};

The references created in this manner are no different than the ones created from
variables, and can be dereferenced in exactly the same ways.

References 269
B.6.2 Using references

To get back to the original object that the scalar points at, you simply put the
object’s type specifier character (i.e., $, @, or %) in front of the variable holding the
reference. For example:

$orig_scalar = $$scalar_ref;
@orig_array = @$array_ref;
%orig_hash = %$hash_ref;

If you have a reference to an array or a hash, you can access the contained elements
using the dereferencing operator (->). For example:

$array_element = $array_ref->[1];
$hash_element = $hash_ref->{type};

To find out what type of object a reference refers to, you can use the ref function.
This function returns a string containing the name of the object type. For example:

print ref $scalar_ref; # prints 'SCALAR'
print ref $array_ref; # prints 'ARRAY'
print ref $hash_ref; # prints 'HASH'

B.6.3 References to subroutines

You can also take references to subroutines. The syntax is exactly equivalent for
other object types. Remember that the type specifier character for a subroutine is &.
You can therefore do things like this:

sub my_sub {
print "I am a subroutine";

}

$sub_ref = \&my_sub;
&$sub_ref; # executes &my_sub
$sub_ref->(); # another way to execute my_sub (allowing parameter passing)

You can use this to create references to anonymous subroutines (i.e., subroutines
without names) like this:

$sub_ref = sub { print "I'm an anonymous subroutine" };

Now the only way to execute this subroutine is via the reference.

B.6.4 Complex data structures using references

I said at the start of this section that references were the key to creating complex
data structures in Perl. Let’s take a look at why this is.

Recall that each element of an array or a hash can only contain scalar values. If
you tried to create a two-dimensional array with code like this:

270 APPENDIX

Essential Perl
NOTE: This code doesn't work
@array_2d = ((1, 2, 3), (4, 5, 6), (7, ,8, 9));

the arrays would all be flattened and you would end up with a one-dimensional
array containing the numbers from one to nine. However, with references we now
have a way to refer to an array using a value which will fit into a scalar variable. We
can, therefore, do something like this:

@arr1 = (1, 2, 3);
@arr2 = (4, 5, 6);
@arr3 = (7, 8, 9);

@array_2d = (\@arr1, \@arr2, \@arr3);

or (without the need for intermediate array variables):

@array_2d = ([1, 2, 3],
[4, 5, 6],
[7, 8, 9]);

Of course, having put our data into a two-dimensional array,5 we need to know
how we get the data back out again. It should be possible to work this out, given
what we already know about arrays and references.

Suppose we want to access the central element of our 2-D array (the number 5).
Actually, our array isn’t a 2-D array at all, it is really an array which contains refer-
ences to arrays in its elements. The element $array_2d[1] contains a reference to
an anonymous array which contains the numbers 4, 5, and 6. One way to do it
would, therefore, be to use an intermediate variable like this:

$row = $array_2d[1];
@row_arr = @$row;
$element = $row_arr[1];

While this will work, Perl gives us ways to write the same thing more efficiently. In
particular, the notation for accessing an object given a reference to it has some
extensions to it. Where previously we have seen syntax like @$arr_ref give us the
array referred to by $arr_ref, there is a more general syntax which looks like:

@{block}

in which block is any piece of Perl code that returns a reference to an array (the same
is true, incidentally, of hashes). In our case, we can, therefore, use this to our advan-
tage and use

@{$array_2d[1]}

5 Or, at least, something that simulates one rather well.

References 271
to get back the required array. As this is now the array in which we are interested, we
can use standard array syntax to get back our required element, that is we replace the
@ with a $ and put the required index in [..] on the end. Our required element is
therefore given by the expression:

${$array_2d[1]}[1]

That does the job, but it looks a bit ugly and, if there were more than one level of
indirection, it would just get worse. Surely there’s another way? Remember when
we were accessing elements of an array using the $arr_ref->[0] syntax? We can
make use of that. We said that $array_2d[1] gives us a reference to the array that
we need. We can, therefore, use the -> syntax to access the individual elements of
that array. The element that we want is given by:

$array_2d[1]->[1];

which is much simpler. There is one further simplification that we can make. Because
the only way to have multi-dimensional data structures like these is to use references,
Perl knows that any multilevel accesses must involve references. Perl therefore
assumes that there must be a deferencing arrow (->) between any two successive sets
of array or hash brackets and, if there isn’t one there, it acts as though it were there
anyway. This means that we can further simplify our expression to:

$array_2d[1][1];

This makes our structure look a lot like a traditional two-dimensional array in a lan-
guage like C or BASIC.

In all of the examples of complex data structures we have used arrays that contain
references to arrays; but it’s just as simple to use arrays that contain hash references,
hashes that contain hash references, or hashes that contain array references (or,
indeed, any even more complex structures). Here are a few examples:

@hobbits = ({ fname => 'bilbo',
lname => 'baggins' },

{ fname => 'frodo',
lname => 'baggins' },

{ fname => 'Sam',
lname => 'Gamgee' });

foreach (@hobbits) {
print $_->{fname}, "\n";

}

%races = (hobbits => ['Bilbo', 'Frodo', 'Sam'],
men => ['Aragorn', 'Boromir', 'Theoden'],
elves => ['Elrond', 'Galadriel', 'Legolas'],
wizards => ['Gandalf', 'Saruman', 'Radagast']);

foreach (keys %races) {

272 APPENDIX

Essential Perl
print "Here are some $_\n";
print "@{$races{$_}}\n\n";

}

B.6.5 More information on references and complex data structures

The manual page perlref contains a complete guide to references, but it can
sometimes be a little terse for a beginner. The perlreftut manual page is a kinder,
gentler introduction to references.

The perllol manual page contains an introduction to using Perl for the pur-
pose of creating multi-dimensional arrays (or lists of lists—hence the name). The
perldsc manual page is the data structures cookbook and contains information
about building other kinds of data structures. It comes complete with a substantial
number of detailed examples of creating and using such structures.

B.7 More information on Perl

Chapter 12 contains details of other places to obtain useful information about Perl.
In general the best place to start is with the manual pages which come with your
distribution of Perl. Typing perldoc perl on your command line will give you an
overview of the various manual pages supplied and should help you decide which
one to read for more detailed information.

index
Symbols

- operator 62, 261
-- operator 261
!= operator 262
$ 54, 102, 126

anchoring matches 64, 68
metacharacter 61

$" 102, 103, 109, 126
$& 67
$, 102, 103
$. 100
$/ 55, 126

controlling output 102
reading data 85, 97
record separator 84, 98, 111
special values 113

$::RD_AUTOACTION 215
$::RD_HINT 220
$::RD_TRACE 220
$_ 65, 99, 104, 113, 180
$| 105
$‘ 67
$’ 67
$1 63, 65, 66, 67, 71
$a 40, 41
$b 40, 41
%_ 180
& 263
&& operator 262
* operator 61, 63, 64, 261
** operator 261
+ metacharacter 61, 63, 64
+ operator 261
++ operator 261
. operator 61, 261
/ operator 66, 261

< operator 262
<= operator 262
<=> operator 40, 262
<> operator 35, 84
== operator 262
=~ operator 67
> operator 262
>= operator 262
? metacharacter 61, 63, 64
@item array 214
\ 61
\A 68
\B 64
\b 64
\D 62
\d 62
\S 62
\s 62
\W 62
\w 62, 64
\Z 68
^ metacharacter 61, 64, 68
^ operator 263
{n,m} 64
| metacharacter 61, 62
| operator 263
|| operator 41, 107, 262
||= 43
~ operator 263

A

-a command line option 54
Aas, Gisle 143
access method 30
ActivePerl 16, 164
ActiveState 16, 164

Aho 162
alt attribute 158
alternate matches 62
alternate phrases 61
anchoring matches 64
and operator 262
anonymous array 83
Apache 123, 124
API 47
Apple Macintosh

carriage return 88
arrays 22, 257

(see also hashes)
array of arrays 82, 85
array of hashes 23, 138
array slice 260
array variable 103
associative arrays 259
context 67, 97, 115
example 83, 86
examples of assignment 257
flexibility 22
lookup 44
reference 269
slice 116
vs. hashes 82
vs. lists 258

arrow operator 260
article 210
ASCII 9, 82, 130

binary 139
character set description 139
converting to EBCDIC 87
data conversion 87
template options 135

ascii2ebcdic 87
example 88
273

274 INDEX
assign 58
attributes 24��30

AutoCommit 236
Chopblanks 235
DECIMAL_DIGITS

239, 240
DECIMAL_FILL 239, 240
DECIMAL_POINT 239, 240
errstr 234
INT_CURR_SYMBOL

239, 240
Kids 234
KILO_SUFFIX 239, 240
LongReadLen 235
LongTruncOk 235
MEGA_SUFFIX 239, 240
MON_DECIMAL_POINT

239, 240
MON_THOUSANDS_SEP

239, 240
NAME 238
NEG_FORMAT 239, 240
NULLABLE 238
NUM_OF_FIELDS 238
PrintError 234
RaiseError 234
statement handle 238
THOUSANDS_SEP 238,

239, 240
TYPE 238
warn 234

audit log 36��38
audit trail 36��37
awk 61

B

backslash 62
bare block 85
bash 76
benchmarking 51��52��56��

76��122
Benchmark.pm 55

Bentley, Jon 38
binary data 14��17��82��150

and $ ⁄ 114
binmode 141
definition 13
file formats 139
line endings 88
PNG file 140

reading data chunks 140
reading the signature 140
working with, 139�144

binding operator 67
binmode 141
bitwise 263
bless 188
block of Perl 40
body 5��218��221
Bowie, David 6
Bragg, Billy 6
Bunce, Tim 47��55
business rules 26��29��38

encapsulation methods 25��26
reason to encapsulate 26

C

C 14��15��16��17
-c command line option 256
C++ 16
caching data

currency conversion 106
Memoize.pm 107

capturing 63��66
caret 64
carriage return 62��88
case transformations 60
CD example 4��5

adding subrecords 151
complex data files 150
complex records 111�113
creating a template 153
data parsing 6
data structure 20��23�25
Data::Dumper 49
grammar 218��219
hash 21��22
parsing 217
printing lists 103�104
Schwartzian transform 43

CD-ROM 9
censor 77
census 4
chain extension 35
channels 194
Chapman, Nigel 17��255
character classes 61��62��83
checksum 142
China 87
chomp 98��99��112

Christiansen, Tom 17��55��255
chunk data 142
chunk footer 142
closelog 37
cmp 41��262
COBOL 128
code 26

reuse 16
colon 64��74

data separated by 73
column widths 133
command line options 53

-a 54
-c 256
-d 256
-e 53
-F 54
-i 54
-M 53
-n 53��54
-p 54
-T 256
-w 256

command line scripts 53��56
comma-separated files (see CSV)
comp.lang.perl.misc 43
compiled 16
Compilers: Principles, Techniques

and Tools 162
complex data files 150

g modifier 156
HTML 154
metadata 151
subrecords 151
XML 154

complex data records
expanded CD file 152
reading, example 152

complex data structures
268��272

using references 269
complex sorts 41
Comprehensive Perl Archive

Network 16
computer science 60
concatenate 51��261
conditional execution 263
connection string 48
consonants 62
context 5
control character 89
control of input 84

INDEX 275
Convert::EBCDIC 87
example 88

Convert::SciEng 91��92��94
converting number formats 90
converting the character set 87
Conway, Damian 28��38��

210��224
cool-talk 76
CPAN 16

ASCII to EBCDIC
module 87

binary files 143
date modules 120��126
HTML parser 165
libwww 164
Logfile 124
Memoize.pm 107
MP3 data 144��145
parser module 174
POD 197
reformatting numbers 91
Text::Bastardize module 76
Text::CSV_XS 109
top-down parsers 210
XML parser 178��208
XML parsers 191

CSV 108
anatomy 108
data records 108
generic read/write

routine 110
Text::CSV_XS 109

currency conversion
memoize 107

customer object 29
Customer.pm 29��30
Customer_Rules.pm 27��28

D

-d command line option 256
d00dz 76
dash 62
data

CSV records 109
exchange 176
field 4
fields 109
formats 12�14
reading chunks 140
transformation 6
types of, 256

data conversion 87
ASCII 87
ASCII and EBCDIC 87
binary data 88
converting the character

set 87
EBCDIC 87
line endings 88
multibyte characters 87
number format 90
reformatting numbers 91
sprintf 91

data file 9��129
corruption check 151
footer 151
header 150
parts of 150
sections 218

data filtering 6
data munging 4��9��17

and data structures 20
audit trail 37
business rules 25
command line scripts 53
examples 8
filter model 33
importance 7
processes 19��22
producing output 23
record-oriented data 98
simple hash 21
sources of data 12
tasks 73
things to know 229�231
usefulness 228

data munging beast 1
data parsing 6

building parsers 209
complex data formats 147
HTML 163
XML 175

data pipes 9��11
data processing 7
data recognition 5��6��16
data record 4

complex structure 110
data sink 9
data source 9��19
data structure

building 216��217
Data::Dumper 51
designing 20��25��38

examples of use, 23
munging processes 19��22
Parse::RecDescent 218
parsing 6
read example 74
reading 82
simple hash 21
transformation 84

Data::Dumper 49��56��222
data_munger 33��34��35
data_reader 33��34
data_writer 33��34
database

and CSV 108
as a datasource 10��47
auditing 36
caching data 106
combining data 19
communicating with 11
connecting 48
data source 9
design 7
read example 49

database driver (see DBD)
database handle 49
Database Interface (see DBI)
database schema 10
date

Date::Calc 120
daylight savings time 115
fields 114
formatting 118
functions 114
international formats 120
manipulation 117��120��121
manipulation examples 117��

118��121
previous Saturday 121

date modules
benchmarking 122
choosing 122

Date::Calc 126
functions 240

Date::Manip 121��126
functions 242

daylight savings time 115
DBD 47��49��55
DBD::mysql 48
DBI 11��55

assigning attributes 234
connect function 47
functions 48��233��235

276 INDEX
DBI (continued)
handle 234
handle attributes 236
prepare function 49
sample program 48

DBM 10
Debug style 181
debugging 49
decimal places 91��136
decoupling 19��20��22
defining record structure 133

field-end markers 134
fixed-width numbers 133

delimited data 101
delimiters 66
Descartes, Alligator 55
digit 62
DOCTYPE 194
Document Object Model

(see DOM)
Document Type Definitions

(see DTD)
dollar sign 64
DOM 191
domain specific constraints 25
Dominus, Mark-Jason 107��

228��229
DOS 82

binary/text files 141
carriage return/line feed 88

dot character 62
double quotes 104
DTD

setting handlers 189
specialized parsers 193
valid documents 178

dump 172
Dumper 50��51

E

-e command line option 53
e modifier 70��72
EBCDIC

coverting to ASCII 87
data conversion 87

ebcdic2ascii 87
Eckstein, Robert 177
Effective Perl Programming 55
Elements of Programming with

Perl 17��255

elsif 264
emacs 82
email header 64
encapsulate 38

business rules 25
encryption 77
end 64
end-of-record marker 132
English 14
epoch 114��116
eq operator 262
equity research 8
escape sequences 62
eval 70��181
exchange rates 106
Expat 178
exponential notation 90
Extensible Mark-up Language

(see XML)
extra data 112

F

-F command line option 54
fatal exception 181
fetchrow_array 49
field separator 112
field-end markers 134
fields 103��112

extracting 100��130
web access log 123

file handle 100
no end-of-record marker 132
output 104��105
reading data 97
writing fixed-width data 136

file input operator 97��98��99
file open 15
file pointer 132
file transfer methods 9
File Transfer Protocol (see FTP)
file transfers 10
filename 36
filtering 4��17

filter model 11��32��35
line end conversion 89

financial models 8
finite state machine 160
fixed-width data 101��128�139

data item 128
defining record structure 133

encode field structures 135
end-of-record, example 132
end-of-record marker 132
extracting fields, example

129��130
multiple record types

131��133
pack 135
printf 136
reading 128
record description 128
record padding 128
sprintf 136
sprintf, example 137
template 130��131
writing 135

fixing 91
floating point numbers 136
floating points 90
floppy disk 9
flushed 105
footer 5��218��221
foreach 113
form feed 62
format description 136
format specifier 137
format_bytes

example 93
format_negative

example 93��94
format_number

example 93
format_picture

example 93
free beer 15
Free Software Foundation 15
free speech 15
Friedl, Jeffrey 78
FTP 9
fun 17
functions 26

Add_Delta_Days 242
available_drivers 233
bind_col 237
bind_columns 238
bind_param 236
bind_param_inout 236
called from DBI 233
called via statement

handle 236
check_date 241

INDEX 277
functions (continued)
chomp 98��99��112
commit 236
connect 48��233
data_sources 233
Date_Cmp 243
Date_DayOfWeek 244
Date_DayOfYear 244
Date_DaysInMonth 244
Date_DaysInYear 244
Date_DaySuffix 244
Date_GetPrev 243
Date_LeapYear 244
Date_to_Text 242
DateCalc 243
Day_of_Week 241
Day_of_Year 241
Days_in_Month 240
Days_in_Year 240
Decode_Month 242
Delta_Days 241
Delta_DHMS 241
do 235
each 260
Easter_Sunday 242
errstr 234
execute 237
fetch 237
fetchall_arrayref 237
fetchrow_array 237
fetchrow_arrayref 237
fetchrow_hashref 237
finish 237
get 244
get_rate 107
getprint 245
getstore 245
gmtime 115
handler 246
head 244
keys 260
leap_year 241
localtime 115��116
map 261
memoize 107
mirror 245
Monday_of_Week 241
new 245
Nth_Weekday_of_Month_Year

241
open 97
pack 135

parse 245
parse_file 245
ParseDate 122��123
ParseDateString 242
ParseDelta 243
ParseRecur 243
prepare 49
print 103��115
printf 135
read 132
ref 269
return 268
rollback 236
seek 132
select 104
selectall_arrayref 235
selectrow_array 235
sprintf 135��138
strftime 118
strict_comment 245
strict_names 246
substr 129��132
System_Clock 242
time 116
timelocal 116
trace 234
UnixDate 243
unpack 130��132��133��134
values 260
Week_Number 241
xml_mode 246

G

g modifier 69��71��85��156
gcc 15
ge operator 262
general principles 19
get 164
get_next_cust_no 27
get_rate 107
Getopt::Std 203
getprint 164
getstore 164��172
getting Perl 15
GIF 139��143

creating 140
gmtime 115
GNU 15
grammar 211��214��215

debugging 220

syntax errors 220
Windows INI 213

graphics files 139
Graphics Interchange Format

(see GIF)
graphs 7
greedy, definition 156
grep 61
group 63
group of characters 61
grouping 63
gt operator 262
Guttman, Uri 46
Guttman-Rosler transform 46

H

Hall, Joseph 42��55
handler 165
Handlers 189
hash 22��86
hash lookup 44
hashes 259

accessing values 260
converting from a list 261
hash slice 260
reference 269
syntax 260

header 4��218
HTML tags 171
processing 5
processing, example of, 153
rule 221

hierarchical 17
hierarchical data 13
Hietaniemi, Jarkko 55
Horatio 58
HTML 12��13��173

converting from XML 197
entities 167
extracting <h1> elements 169
extracting from the web 164
listing header tags 170
listing specific links 168
parsing 154
parsing example 165��171��

172
parsing links 168
prebuilt parsers 167
removing tags 154��155
tag 165

278 INDEX
HTML (continued)
tag attributes 157
testing the parser 166

HTML::Element 171��172
HTML::LinkExtor 167��168��169

functions 247
HTML::Parser 154��161��

165��174
functions 245
handlers 246

HTML::TokeParser 169��173
functions 248

HTML::TreeBuilder 171
functions 249

HTTP 12
extracting data WWW 164

hyperreductionist English 76
Hypertext Mark-up Language

(see HTML)

I

-i 54
-i command line option 54
i modifier 68��69
I/O

chaining 35
independence 33��38
pipes 32
redirection 31��32

IBM
data conversion 87

if 14��263��264
Image::Info 143��145
index 78
Information Systems 7
Information Technology 7
input 19

record separator 55��102
record separator example

111��113
record separator, reading 97
routine 20

integers 90��136
international date formats 120
Internet 12
interpolate 51
interpreted 16
interstices 8��228
IP addresses 46
is_valid_sales_ref 28

J

jaded 17
Japan 87
Jargon File 4
Johnson, Andrew 17��255
JPG 143

K

k3wl 76
Kernigan, Brian 38
keyboard 31

L

label 54
lc 60
lcfirst 60
le operator 262
league table 4
leaning toothpick syndrome 66
Learning Perl 17��255
left align 91
lexer 160
lexical variable 74
Library for WWW Programming

(see LWP)
line end conversion 89
line endings 88
line feed 62��88
linguistics 14
links, HTML 167
Linux

line feed 88
list

separator variable 103
vs. arrays 258

list functions 259
listing particular users 76
listing users 75
load_products 35
locale 60
localtime 115��118��122
Logfile 124��125
logic 25
logical operators 263

bitwise 263
loops 264

control of, 265
for 264

foreach 265
last 265
next 265
redo 265
while 265

Lotus 139
Loukides, Mike 38
lower case 60
lp 75
lvalue 58
LWP 172��174

getting HTML from the
WWW 164

mailing list 174
LWP::Simple 164��173

functions 244

M

-M command line option 53
m modifier 65��66��68��69
m⁄⁄ 65��78
Macdonald, John 55
make 15
map 44
Mastering Algorithms with

Perl 55
Mastering Regular

Expressions 78
match modifiers 65��68
match operator 68
matching alternatives 62
memoize 107
Memoize.pm 107
metacharacters 61
metadata 133��135��150

definition 151
methods

format_bytes 240
format_negative 240
format_number 239
format_picture 240
format_price 240
round 239
unformat_number 240

Microsoft 139
Access 10
Excel 139
Windows 31
Word 61

MIME 9

INDEX 279
modifiers 71
g 85
m 68
o 90
s 68
x 68

modules
business rules 26��27��38
convert::SciEng 91
Data::Calc 240
Date::Manip 242
HTML:: Element 249
HTML::Element 171
HTML::LinkExtor 167��247
HTML::Parser 154��247
HTML::TokeParser 169��248
HTML::TreeBuilder 171��249
Image::Info 143
LWP 164
LWP::Simple 164��244
MPEG::MP3Info 144
Number::Format 91��238
Parse::RecDescent 153��162
Parse::Yapp 162
POSIX 118
Time::Local 116
XML::DOM 191
XML::Parser 154��161��

178��250
monitor 31
MP3 files 143

ID3 data 144
MPEG::MP3Info 144��145
multibyte characters 87
multiple record types 131
munge 4�
munging 19
My Netscape 193
MySQL 48

N

-n command line option 53��54
Named Pipe 11
Nandor, Chris 144��193
natural code 228
natural numbers 90
ne operator 262
Network File System (see NFS)
newline character 113��257

as field separator 112
input control 84

metacharacter 62
output records 102
record-oriented data 97

NFS 9
node 184
noncolon 64
nondigit 62
nongreedy 156
nonspace character 62
nonvowel 62
nonword character 62
normalization 7
Notepad 82
noun_phrase 210
Number::Format 91��92��94

attributes 238
example 93��94
methods 239

numerical abbreviations 77
numerically 40

O

o modifier 70��90
O’Reilly, Tim 38
object 26��38��210
object class 28
Object Oriented Perl 28��38
Object style

vs. Tree 188
object-oriented programming

(see OOP)
objects 38
Objects style 186
OOP 28
open function 97
Open Source 140
openlog 37
operators 84

concatenation 261
logical 262
mathematical 261
string multiplication 261

optional 61
or operator 262
Oracle 10��47
oraperl 47
Orcish Manoeuvre 42��55��107
Orwant, Jon 17��55
output 19��31

buffer 105

field separator 102��103
file handle 105
list separator 102
record separator 54��102
routine 19��20

P

-p 54
-p command line option 54
pack 135��141��144
packed-default sort 46
padding 128
paragraph mode 84��113
parameter passing 267
parameters 58
parentheses 63��65
parse tree 172
Parse::RecDescent 153��162��

210��216
$::RD_AUTOACTION 215
$::RD_HINT 220
$::RD_TRACE 220
autotrees 223
dynamic rules 224
error handling 224
example 217
incremental parsing 224
look-ahead rules 223
precompiling parsers 224
subrule argument 224

Parse::Yapp 162
parse_file 165��172
ParseDate 122��123
parsefile 184��192��196
parser actions 217
parsers 154

adding actions 220
building your own 209
checking output 222
HTML 154
HTML::Element 171
HTML::LinkExtor 167
HTML::Parser 165
HTML::TokeParser 169
HTML::TreeBuilder 171
Parse::RecDescent 153��210
Parse::Yapp 162
XML::DOM 191
XML::Parser 178
XML::RSS 193

280 INDEX
parsing 4��17
(see also data parsing)
actions 214
bottom-up 160
building a data structure 216
definition 158
example, simple English

sentences 210
failures 180
HTML 157��158��165

�see also�����	
HTML, example 171
HTML, prebuilt parsers 167
jargon 159
LL parser 161
LR parser 160
parser object, creating 211
production 159
regular expressions 214
RSS file, example 196
structured data 157
subrules 159
terminal 159
testing for HTML 166
tokens 159
top-down 161
Windows INI 212
XML 178��187��189
�see also
��	

password 48
pattern matching 58��60
payroll 4��7
Peek, Jerry 38
performance 76
Perl 8��14�16��17

arrays 82��129
benchmarking date

modules 122
building parsers 210
command line options 255��256
command line scripts 53
community 229
complex data structures 268
complex record structure 111
conditional execution 263
data munging advantages 16
data structure 16
data types 256
date and time manipulation 117
daylight savings time 115
dealing with complex

records 110

default variable 99
end-of-record marker 132
fixed-width data 130
flow of control 263
getting HTML from the

WWW 164
handling dates 114
HTML parsing 157
idioms 40
input record separator 112
international date formats 120
interpreter 48��255��256
line ends 89
local time 115
loops 264
multibyte characters 87
opening a file 262
operators 261
output file handles 105
parsers 161��162
record-oriented data 97��98
references 268
references and complex data

structures 269
regular expressions 61��65
running 255
sorting 40
string handling 58
subroutines 266
substrings 59
variables 256
web access logs 124
why use 228
writing objects 38
writing separate records 102
XML parsers 178

Perl Mongers 229
Perl Monks 229
Perl: The Programmer’s

Companion 17��255
perldata 261
perldoc 17��55

perlfunc 126��141��144
perlre 61��77
perlrun 256
perlunicode 94
perlvar 94��126

perltoot 28
phrase matching 61
phrases 61
Pig Latin 76

Pike, Rob 38
pipe separated files 108
plain old documentation

(see POD)
plain text 12��197
PNG files 140��143

IHDR chunk 142
reading 140
signature 141
testing the reader 143

POD 197
pointers (see references)
pop 259
port number 12
Portable Network Graphics

(see PNG files)
positive integers 90
positive lookahead 65
POSIX 118
POSIX::strftime 120��126
postfix 91
prebuilt parsers 161
print 58��115

lists of items 103
record-oriented data 102
to different file handles 104

printf 135��144
producing different document

formats 197
production 159
program input 31
programmers 17
Programming Pearls 38
Programming Perl 17
Programming the Perl DBI 55
Programming Web Graphics with

Perl & GNU Software 140
pronoun 210
pseudocode 19
punctuation 62��66
push 259

Q

quantifying matches 63
Quicksort 42

R

RDBMS 10��11
read 132��144

INDEX 281
reading /etc/passwd 74
recognition 4��17
recognizing numbers 90
record 101��103��110��153
record based 73
record-oriented data 13��17��

96�126
caching 105
CD data file 97
complex records 110
CSV 108 (see also CSV)
current record number 100
date fields 114
different file handles 104
extracting data fields 100
print lists of items 102
processing simple

structures 100
reading 97
reading a record at a time 98
splitting into fields 102
web access logs 123
writing separate records 102
writing simple structures 102

redirection 31��32
references 256��272

complex data structures 269
creating 268
to subroutines 269
using 269

reformatting numbers
CPAN modules 91
sprintf 91

regular expressions 58��60�77
and $⁄ 114
complex 65
definition 60
delimiter 66
extracting fixed-width

data 129
greedy 156
limitations 157
matching numbers 90
metacharacters 61
nongreedy 156
parsing 214
strings within strings 60
syntax 61
text replacement example 85
text transformation 84
using 65

relational database management
system (see RDBMS)

repeated 61
replacement string 70��71
requirements 21
rich site summary (see RSS)
right align 91
root 75
Rosler, Larry 46
rot13 77
round 93

example 93
RSS

creating with XML::RSS 195
definition 193
multiple channels 194
parsing 196
sample file 193

rule matching 215

S

s modifier 68��69
s/// 69��78
save_cust_record 27��28
scalars 115��256

array element 260
context 97
variable 84

Schwartz, Randal 17��43��55��255
Schwartzian transform 43��45��55

variation 46
scope 85
sed 61
seek 132
select 104
sentence 210��212
separated data 101
separating parsing 22
setHandlers 189
Sethi 162
setlogmask 37
SGML 13
shift 185��259
short-circuiting 41��107��263
SI 91
signature 140
simple sorts 40
sinks 17��36
slash 61
Slashdot 193

slurp mode 113
sorting 40�47

and the Schwartzian
transform 45

code 44
Orcish Manoeuvre 42
packed-default 46
sort function 40
sort key 44

source data 5��17��36
space 62��64
SPICE 91
splice 185��259
split 83��101��112��113
spreadsheets 7��108
sprintf 51��92��135��138��144
SQL 11��49
square brackets 62
squares 70
Standardized General Mark-up

Language (see SGML)
start 64
statement modifiers 264
statistics 86
STDOUT 104��105
Stream style 181��182
stream-based 182
strftime 118
strings 58��59��60

finding within strings 59
index 59
matching 65
replacement 69
rindex 59

structured data 17��157
Structured Query Language

(see SQL)
Style 179
sub 266
subject 210
subrecords 151
subroutines 40

reference to 269
subrules 159

optional, list of 213
repeating, list of 213
suffixes 213

Subs style 182
substitution modifiers 69
substr 58��78��129��132
substrings 58��59
successor state 160

282 INDEX
Sybase 47
Sybase Adaptive Server

Anywhere 10
Sybase Adaptive Server

Enterprise 10
sybperl 47
syntactic sugar 99
synthetic code 228
Sys::Syslog 37
syslog 37
System 242

T

-T command line option 256
tab 62��257
tab character 103
tables 7
tab-separated data 101��108
tag 168
tape 9
TCP/IP 12
TCP/IP Socket 12
telephone book 41
templates 130��131��135
terminals 159��211
text 17

editor 88
file 141
formats 4
matching 78
replacement 84
statistics 85��86
substitution 70��78
transformation 84

Text::Bastardize 76
Text::CSV 109��110
Text::CSV_XS 109
Text::Wrap 203
The Art of Compiler Design 162
The Dragon Book 162
“The man of descent” 224
The Perl Cookbook 55
The Perl Journal 108��224��229
The Practice of Programming 38
The UNIX Programming

Environment 38
TIFF 143
time 116

(see also date)
Date::Calc 120
daylight savings time 115

formatting 118
functions 114
manipulation 117��120��121

Time::Local 116
timelocal 116
timethese 51��52
toascii 87
toebcdic 87
tokens 169

definition 159
Torkington, Nathan 55
transaction-level locking 27
transferring data 7
transformation 4��16��17

HTML output 206
POD output 205
text output 207
XML 198

transforming data 36
translate 72
translate_products 35
translating data 85

caching 105
currency rates 106
English to American 70
example 72

Tree style 182
example 183��185��204
vs. Objects style 186��188

two-digit year 116

U

uc 60��78
ucfirst 60
Ullman 162
unfixing 91
unformat_number

example 93
Unicode 87
Unicode::Map8 87
Unicode::String 87
Unisys 139
UNIX 11��14��16��33

ASCII text files 82
binary/text files 141
data files 9
data pipes 11
databases 10
epoch 114
filter model overview 31
�see also���
�������������	

fortune 111
I/O redirection character

strings 32
line feed 88
POSIX 118
system logs 37
tools 61
using system logs 37

UNIX filter model 35��38
Schwartzian transform 45
translations 35��73

UNIX Power Tools 38
unless 14��264
unpack 144

by column widths 133
example 134��141��153
fixed-width data 130��131
no end-of-record marker 132

unshift 259
unstructured data 12��17��82
upper case 60
use locale 60
username 48
UTF-8 format 87
utf8 module 87��94

V

valid vs. well-formed 177
verb 210
vertical bar 62
vi 61��82
vowel 62

W

-w command line option 256
Wall, Larry 14��17
Wallace, Shawn P. 140
war3z 76
web access log

date 124
HTTP request 124
IP address 123
response code 124
time 124
URL 124

web server 12��123
while 113

$_variable 99
reading a PNG file 141

INDEX 283
white space 62��75��83��113
Windows 16

ASCII text files 82
binary/text files 141
carriage return/line feed 88
data files 9
databases 10
I/O redirection 32
INI file grammar 213
INI file parsing 212

word boundaries 64
word character 62
World Wide Web Consortium

(W3C) 191
writing separate records 102

X

x modifier 68��69
x operator 261
XML 8��13��154

introduction 176
parsers 178
parsing failures 180
parsing input 203
parsing using handlers 189
parsing, example 178��191
parsing, Objects style 187
sample file 177
tag 179
transformation script 198�205
Unicode 87

XML Pocket Reference 177
XML::DOM 191��192
XML::Parser 154��161

CPAN alternatives 191
Debug style 181
example 178��203
functions 250
RSS file 196
Stream style 188

XML::RSS 193
creating a file 195

Y

Yahoo! 177
Yorick 58

Purchase of Data Munging with Perl includes free author online support.
For more information on this feature, please refer to page xvi.

	contents
	foreword
	preface
	Intended audience
	About this book
	Typographical conventions
	Source code downloads
	Author Online
	Acknowledgments

	about the cover illustration
	Foundations
	Data, data munging, and Perl
	1.1 What is data munging?
	1.1.1 Data munging processes
	1.1.2 Data recognition
	1.1.3 Data parsing
	1.1.4 Data filtering
	1.1.5 Data transformation

	1.2 Why is data munging important?
	1.2.1 Accessing corporate data repositories
	1.2.2 Transferring data between multiple systems
	1.2.3 Real-world data munging examples

	1.3 Where does data come from? Where does it go?
	1.3.1 Data files
	1.3.2 Databases
	1.3.3 Data pipes
	1.3.4 Other sources/sinks

	1.4 What forms does data take?
	1.4.1 Unstructured data
	1.4.2 Record-oriented data
	1.4.3 Hierarchical data
	1.4.4 Binary data

	1.5 What is Perl?
	1.5.1 Getting Perl

	1.6 Why is Perl good for data munging?
	1.7 Further information
	1.8 Summary

	General munging practices
	2.1 Decouple input, munging, and output processes
	2.2 Design data structures carefully
	2.2.1 Example: the CD file revisited

	2.3 Encapsulate business rules
	2.3.1 Reasons to encapsulate business rules
	2.3.2 Ways to encapsulate business rules
	2.3.3 Simple module
	2.3.4 Object class

	2.4 Use UNIX “filter” model
	2.4.1 Overview of the filter model
	2.4.2 Advantages of the filter model

	2.5 Write audit trails
	2.5.1 What to write to an audit trail
	2.5.2 Sample audit trail
	2.5.3 Using the UNIX system logs

	2.6 Further information
	2.7 Summary

	Useful Perl idioms
	3.1 Sorting
	3.1.1 Simple sorts
	3.1.2 Complex sorts
	3.1.3 The Orcish Manoeuvre
	3.1.4 Schwartzian transform
	3.1.5 The Guttman-Rosler transform
	3.1.6 Choosing a sort technique

	3.2 Database Interface (DBI)
	3.2.1 Sample DBI program

	3.3 Data::Dumper
	3.4 Benchmarking
	3.5 Command line scripts
	3.6 Further information
	3.7 Summary

	Pattern matching
	4.1 String handling functions
	4.1.1 Substrings
	4.1.2 Finding strings within strings (index and rindex)
	4.1.3 Case transformations

	4.2 Regular expressions
	4.2.1 What are regular expressions?
	4.2.2 Regular expression syntax
	4.2.3 Using regular expressions
	4.2.4 Example: translating from English to American
	4.2.5 More examples: /etc/passwd
	4.2.6 Taking it to extremes

	4.3 Further information
	4.4 Summary

	Data munging
	Unstructured data
	5.1 ASCII text files
	5.1.1 Reading the file
	5.1.2 Text transformations
	5.1.3 Text statistics

	5.2 Data conversions
	5.2.1 Converting the character set
	5.2.2 Converting line endings
	5.2.3 Converting number formats

	5.3 Further information
	5.4 Summary

	Record-oriented data
	6.1 Simple record-oriented data
	6.1.1 Reading simple record-oriented data
	6.1.2 Processing simple record-oriented data
	6.1.3 Writing simple record-oriented data
	6.1.4 Caching data

	6.2 Comma-separated files
	6.2.1 Anatomy of CSV data
	6.2.2 Text::CSV_XS

	6.3 Complex records
	6.3.1 Example: a different CD file
	6.3.2 Special values for $/

	6.4 Special problems with date fields
	6.4.1 Built-in Perl date functions
	6.4.2 Date::Calc
	6.4.3 Date::Manip
	6.4.4 Choosing between date modules

	6.5 Extended example: web access logs
	6.6 Further information
	6.7 Summary

	Fixed-width and binary data
	7.1 Fixed-width data
	7.1.1 Reading fixed-width data
	7.1.2 Writing fixed-width data

	7.2 Binary data
	7.2.1 Reading PNG files
	7.2.2 Reading and writing MP3 files

	7.3 Further information
	7.4 Summary

	Simple data parsing
	Complex data formats
	8.1 Complex data files
	8.1.1 Example: metadata in the CD file
	8.1.2 Example: reading the expanded CD file

	8.2 How not to parse HTML
	8.2.1 Removing tags from HTML
	8.2.2 Limitations of regular expressions

	8.3 Parsers
	8.3.1 An introduction to parsers
	8.3.2 Parsers in Perl

	8.4 Further information
	8.5 Summary

	HTML
	9.1 Extracting HTML data from the World Wide Web
	9.2 Parsing HTML
	9.2.1 Example: simple HTML parsing

	9.3 Prebuilt HTML parsers
	9.3.1 HTML::LinkExtor
	9.3.2 HTML::TokeParser
	9.3.3 HTML::TreeBuilder and HTML::Element

	9.4 Extended example: getting weather forecasts
	9.5 Further information
	9.6 Summary

	XML
	10.1 XML overview
	10.1.1 What’s wrong with HTML?
	10.1.2 What is XML?

	10.2 Parsing XML with XML::Parser
	10.2.1 Example: parsing weather.xml
	10.2.2 Using XML::Parser
	10.2.3 Other XML::Parser styles
	10.2.4 XML::Parser handlers

	10.3 XML::DOM
	10.3.1 Example: parsing XML using XML::DOM

	10.4 Specialized parsers—XML::RSS
	10.4.1 What is RSS?
	10.4.2 A sample RSS file
	10.4.3 Example: creating an RSS file with XML::RSS
	10.4.4 Example: parsing an RSS file with XML::RSS

	10.5 Producing different document formats
	10.5.1 Sample XML input file
	10.5.2 XML document transformation script
	10.5.3 Using the XML document transformation script

	10.6 Further information
	10.7 Summary

	Building your own parsers
	11.1 Introduction to Parse::RecDescent
	11.1.1 Example: parsing simple English sentences

	11.2 Returning parsed data
	11.2.1 Example: parsing a Windows INI file
	11.2.2 Understanding the INI file grammar
	11.2.3 Parser actions and the @item array
	11.2.4 Example: displaying the contents of @item
	11.2.5 Returning a data structure

	11.3 Another example: the CD data file
	11.3.1 Understanding the CD grammar
	11.3.2 Testing the CD file grammar
	11.3.3 Adding parser actions

	11.4 Other features of Parse::RecDescent
	11.5 Further information
	11.6 Summary

	The big picture
	Looking back— and ahead
	12.1 The usefulness of things
	12.1.1 The usefulness of data munging
	12.1.2 The usefulness of Perl
	12.1.3 The usefulness of the Perl community

	12.2 Things to know
	12.2.1 Know your data
	12.2.2 Know your tools
	12.2.3 Know where to go for more information

	Modules reference
	A.1 DBI
	A.1.1 Functions called on the DBI class
	A.1.2 Attributes of the DBI class
	A.1.3 Functions called on any DBI handle
	A.1.4 Attributes of any DBI handle
	A.1.5 Functions called on a database handle
	A.1.6 Database handle attributes
	A.1.7 Functions called on a statement handle
	A.1.8 Statement handle attributes

	A.2 Number::Format
	A.2.1 Attributes
	A.2.2 Methods

	A.3 Date::Calc
	A.4 Date::Manip
	A.5 LWP::Simple
	A.6 HTML::Parser
	A.6.1 Handlers

	A.7 HTML::LinkExtor
	A.8 HTML::TokeParser
	A.9 HTML::TreeBuilder
	A.10 XML::Parser

	Essential Perl
	B.1 Running Perl
	B.2 Variables and data types
	B.2.1 Scalars
	B.2.2 Arrays
	B.2.3 Hashes
	B.2.4 More information

	B.3 Operators
	B.3.1 Mathematical operators
	B.3.2 Logical operators

	B.4 Flow of control
	B.4.1 Conditional execution
	B.4.2 Loops

	B.5 Subroutines
	B.6 References
	B.6.1 Creating references
	B.6.2 Using references
	B.6.3 References to subroutines
	B.6.4 Complex data structures using references
	B.6.5 More information on references and complex data structures

	B.7 More information on Perl

	index

